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Abstract

In this work, we study the exponential stability of the stationary distribution of a McKean-Vlasov equa-
tion, of nonlinear hyperbolic type which was recently derived in [1,2]. We complement the convergence 
result proved in [2] using tools from dynamical systems theory. Our proof relies on two principal arguments 
in addition to a Picard-like iteration method. First, the linearized semigroup is positive which allows to 
precisely pinpoint the spectrum of the infinitesimal generator. Second, we use a time rescaling argument to 
transform the original quasilinear equation into another one for which the nonlinear flow is differentiable. 
Interestingly, this convergence result can be interpreted as the existence of a locally exponentially attracting 
center manifold for a hyperbolic equation.
© 2020 Published by Elsevier Inc.
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1. Introduction

1.1. Problem and strategy

In [1,2], the authors derived mean-field equations for a network of excitatory spiking neurons 
in the limit of a large number of neurons (see also [3]). It is based on a recently published model 
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of simple neural network [1] in which the spiking dynamics of the individual neurons is modeled 
with a jump process rather than with threshold crossing [4] or blow up of the membrane potential 
[5]. The distribution x → g(t, x) of the membrane potential of the limiting mean-field process 
solves:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
g(t, x) =

⎡⎣λx −
∞∫

0

(f (v) + λv)g(t, v)dv

⎤⎦ ∂xg(t, x) + [λ − f (x)]g(t, x), t, x > 0

g(t,0) =
∫∞

0 fg∫∞
0 (f (v) + λv)g(t, v)dv

g(0, ·) ∈ L1+(R+)

where f , is the rate function which is positive on R>0. In addition to the derivation of the mean-
field equations, the authors of [2] computed an analytical formula for the stationary distribution 
of the equations. In the case λ = 0, they were able to prove that

‖g(t) − g∞‖L1
t→∞→ 0

where g∞ is the unique stationary distribution of the system, note that it has a density. The above 
limit holds for regular enough initial conditions. In the case where f (x) ≥ cxξ for all x ∈ [0, 1]
with c > 0, ξ ≥ 1, they showed that the above convergence is O

(
(1 + t)−1/ξ

)
.

The main focus of the present work is the case λ = 0. Indeed, in [6], we provided numerical 
evidences for oscillatory patterns when λ > 0 thereby suggesting that the above convergence 
result is not true for all λ > 0. The advantage of the case λ = 0 is that it removes the pre-factor 
λx which allows to use a time rescaling to avoid studying a quasilinear equation [7] and to build a 
differentiable nonlinear semigroup of solutions after a convenient cutoff. Finally, it also removes 
the boundary condition. The equation thus reads:⎧⎨⎩

∂tg(t, x) = − (∫∞
0 f (v)g(t, v)dv

)
∂xg(t, x) − f (x)g(t, x), x, t > 0

g(t,0) = 1,

g(0, ·) = g0 ∈ L1+(R+).

(1)

Our aim here is to revisit the convergence to the stationary distribution from a dynamical systems 
point of view in order to prove that the convergence is locally exponential in time.

Note that there is a one dimensional family of stationary solutions (gα)α>0 and only one of 
them, g∞, is a stationary distribution i.e. with integral equal to one. This family is given by:

gα(x) = exp

⎛⎝− 1

α

x∫
0

f

⎞⎠ ,

∞∫
0

fgα = α > 0. (2)

The existence of this family implies that zero is in the spectrum of the linearized equation: the 
principle of linearized stability does not apply. There are several strategies to prove the nonlinear 
stability of gα apart from entropy methods [8] which we have not looked at.

The first relies on the local attractiveness of a center manifold composed of the family 
(gα)α>0. Indeed, the analysis of the spectrum shows that the center manifold should be one 
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dimensional. To prove nonlinear stability, one would need to prove that the center manifold is 
locally attracting [9,10]. Unfortunately, it is difficult to achieve such program as it relies heavily 
on the fact that the linear flow is regularizing, which in the case of transport equations, requires 
to use regular initial conditions. The second strategy, which we shall rely on, starts with the ob-
servation that the flow of (1) conserves the mass. Hence, the nonlinear flow is foliated by the 
linear form g → ∫∞

0 g. The dynamics on each hyperplane possesses a unique equilibrium which 
is now hyperbolic. Thus, one can hope proving nonlinear stability by simpler means in this case. 
A third strategy, which is similar to the one used in [11], is to study the integral equation (see 
[2]) satisfied by a(t) = ∫∞

0 f (v)g(t, v)dv, this equation is akin to a Volterra one. The advantage 
lies in a simpler phase space but the zero eigenvalue still belongs to the spectrum.

Using the second idea, we prove the existence of an exponentially attracting center manifold 
which is transverse to the hyperplanes associated with the linear form g → ∫∞

0 g. This is notice-
able as such general result is not known for transport equations and for quasilinear equations. It 
is for example well known for delay differential equations [12–15] which are a kind of transport 
equation with a nonlinear boundary condition.

1.2. Link to previous work

The type of equations considered here is well studied in the population dynamics literature 
[11,16–18,8] but a complete analogy with (1) would require to introduce unbounded birth / death 
rates of the species which is less studied for modeling reasons. Another noticeable difference lies 
in the fact that the equations are considered on a non compact domain here. In the neuroscience 
community, these equations stems from a recent surge to put on rigorous grounds [19–21] mean-
field of networks of spiking neurons and more precisely of integrate-and-fire neurons [22,23]. 
However, this last mean-field equation exhibits blow up unlike the one that we study here because 
the spiking mechanism of individual neurons is based, here, on a jump process instead of thresh-
old crossing. Additionally, the mean-field of spiking neurons modeled after Hawkes processes 
have been recently investigated [24–27]: the proof of the convergence of the particle system is 
simpler. The mean-field equation in this case (see also [28]) is a nonlinear age-structured equa-
tion akin to the one mentioned above in the population dynamics context. It has been recently 
studied from a dynamical systems point of view [29,30].

1.3. Plan of the paper and main result statement

In the next section, we precisely state our main results. In section 3, we first study the lin-
earized equation around a stationary point gα in the space L1(R+) and prove that the solution 
of the linear equation converges exponentially fast to zero. Then, in section 4, we study the non-
linear equation after explaining the difficulties we must face. We perform a time rescaling and a 
cut-off to induce a differentiable nonlinear semigroup of solutions but not for the PDE (1). We 
then use a variant of Picard theorem to prove nonlinear stability for the rescaled equation. Finally, 
we conclude with the main result in section 4.5 concerning with the local exponential stability 
of the stationary solution g∞ by using results about the rescaled semigroup. For convenience, we 
re-state this result just below. In section 5, we discuss the limitations of our method.

Most of our results rely on norm estimates in Sobolev spaces which are technical but straight-
forward once a few facts are known about the rate function f . These computations are mostly 
done in the appendices.
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Theorem 1.1. Grant Assumptions 1 and 2. The distribution g∞ is locally exponentially stable 
for the flow of (1) in X̂A

2 , that is for all ε > 0 small enough, there is a neighborhood Vε ⊂ {φ ∈
L1(R+), φ′′ ∈ L1(R+), f φ′ ∈ L1(R+), f 2φ ∈ L1(R+), φ(0) = φ′(0) = 0, 

∫
φ = 0} such that

∃Cε ≥ 1 ∀g0 ∈ g∞ + Vε, ∀t ≥ 0 ‖g(t) − g∞‖L1 ≤ ‖g(t) − g∞‖XA
2

≤ Cεe
(
s(A|)+ε

)
t‖φ‖2,A

where the spectral bound is know to be negative: s(A|) < 0.

2. Notations and assumptions

Whenever possible, we shall write C≤a = {z ∈ C | z ≤ a} and similarly for C≥... We use 
the notation f � g when there exists a constant C > 0 independent of the parameters of interest 
such that f ≤ Cg.

We denote by L1(R+, dμ) the space of integrable functions from R+ to C for the measure μ, 
we then define X = L1(R+, dl) where l is the Lebesgue measure. We further denote by L1+(R+)

the subspace of non-negative functions and by X̂ = {φ ∈ X | ∫∞
0 φ = 0

}
the subspace of func-

tions of zero integral. We also define the two following linear forms respectively on L1(f (x)dx)

and X :

a(φ) =
∞∫

0

f φ, I (φ) =
∞∫

0

φ.

We write H the Heaviside function H(x) = 1 if x ≥ 0 and 0 otherwise.
For a linear operator A ∈ L(X , Y), we write ker(A) its kernel and Ran(A) its range. The 

resolvent operator R(μ, A) of a closed operator A is R(μ, A) = (μId − A)−1 for μ in the resol-

vent set ρ(A) of A. Finally, we write 	(A) the spectrum of A and s(A) 
def= sup{λ : λ ∈ 	(A)}

the spectral bound. For a family of bounded operators (T(t))t≥0, we write the growth bound 

ω0(T) 
def= inf{ω ∈ R : ∃Mω ≥ 1 such that ‖T(t)‖L(X ) ≤ Mωeωt , ∀t ≥ 0}. The multiplication 

operator is written Mf : φ → f φ. When (Y, ‖ · ‖Y ) is a Banach space, I ⊂ R an interval and 
φ ∈ C0(I, Y), we write the sup-norm on Y as ‖φ‖C0(I,Y) = supt∈I ‖φ(t, ·)‖Y . The shorter nota-
tion ‖φ‖C0 can be used if the interval I and the Banach space Y are clearly determined. Keeping 
the same notations, we write C0

b([s, ∞), Y) the Banach space of continuous functions bounded 
on [s, ∞) with respect to the sup-norm on Y .

We introduce a notation concerning the notion of Sobolev space [31] which is used all along 
in this paper. For a closed operator C on the domains D(Cn) and λ ∈ ρ(C), we introduce the 

norms ‖ · ‖n,C,λ
def= ‖(λId − C)n · ‖ and call YC

0
def= Y , YC

n

def= (D(Cn), ‖ · ‖n,C) the Sobolev 
space of order n associated with C. Note that for each fixed n ∈ N , all the norms ‖ · ‖n,C,λ are 
equivalent for λ ∈ ρ(C) and are therefore written ‖ · ‖n,C if no confusion is possible.

Following [2], we make the following assumptions concerning the rate function f :

Assumption 1. f is convex increasing, f (0) = 0, f (x) > 0 for all x > 0, lim∞ f = ∞ and f ∈
C2(R+). Further assume that sup

x≥1

f ′(x)
f (x)

+ f ′′(x)
f ′(x)

< ∞.

Assumption 2. f is such that f ′(0) = 0.
812
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From [2], this implies the following properties:

Remark 1. Grant Assumption 1, we have the following properties:

(i) There is c > 0 such that f (x) ≥ cx for all x ≥ 1.
(ii) For all A > 0, there is CA > 0 such that for all x ≥ 0, f (x + A) ≤ CA(1 + f (x)).

(iii) There is C > 0 such that f (x) ≤ C exp(Cx) for all x ≥ 0.
(iv) f is super additive that is: for all (x, y) ∈R2+, f (x + y) ≥ f (x) + f (y).

3. Linear analysis

Let us consider the unique (see [2] for a proof) stationary point g∞ of the family (gα)α>0

such that 
∫∞

0 g∞ = 1 and define the stationary firing rate a∞
def= ∫∞

0 fg∞. We obtain g∞(x) =
exp
(
− 1

a∞
∫ x

0 f
)

. If we write g(t, x) = g∞(x) + φ(t, x), we find at first order in φ:

{
∂tφ(t, x) + a∞∂xφ(t, x) + f (x)φ(t, x) = −a(φ)g′∞(x), x, t > 0
φ(t,0) = 0.

(3)

We define the following unbounded linear operators on X :

A0φ = −a∞φ′ − f φ, D(A0) = {φ ∈X , φ′ ∈X , f φ ∈X , φ(0) = 0}, (4)

Bφ= − a(φ)g′∞, D(B) = L1(f (x)dx), (5)

A = A0 + B, D(A) = D(A0), (6)

which allows us to write (3) as φ̇ = Aφ.

3.1. Semigroup of solutions

We solve the linear equation (3) based on fairly standard tools from C0–semigroup theory 
[31]. What is noticeable in the following proposition is that the linearized equation generates 
a positive C0–semigroup. We know [1,2] that the nonlinear semigroup of solutions of (1) is 
positive because it yields the law of a stochastic process. Intuitively, one can think of the linear 
semigroup, built in the following proposition, as the differential of the nonlinear one. Hence, we 
do not expect it to be positive.

Proposition 3.1. Grant Assumption 1. Let us consider the semigroup (T0(t))t≥0 on X given by 
the formula

(T0(t)φ)(x) = exp

⎛⎝− 1

a∞

x∫
x−a∞t

f

⎞⎠φ(x − a∞t)H(x − a∞t). (7)

Then, we have the following properties:

1. (T0(t))t≥0 is a positive contraction C0-semigroup on X ,
813



A. Drogoul and R. Veltz Journal of Differential Equations 270 (2021) 809–842
2. its infinitesimal generator is given by (A0, D(A0)),
3. the growth bound of (T0(t))t≥0 is ω0 = −∞, hence 	(A0) = ∅,
4. (A, D(A)) generates a positive C0-continuous semigroup (T(t))t≥0 on X .

Proof.

1. The semigroup / positivity properties are clear. By definition

‖T0(t)φ‖X =
∞∫

a∞t

exp

⎛⎝− 1

a∞

x∫
x−a∞t

f

⎞⎠ |φ(x − a∞t)|dx ≤ ‖φ‖X .

This shows that T0(t) is a contraction on X . We now show the strong continuity (with 
a∞ = 1 for simplicity), ∀φ ∈ X , ∀t ≥ 0:

‖T0(t)φ − φ‖X ≤
∞∫

0

| exp

⎛⎝−
x+t∫
x

f

⎞⎠φ(x) − φ(x + t)|dx +
t∫

0

|φ(x)|dx

≤
∞∫

0

|φ(x) − φ(x + t)|dx +
∞∫

0

⎛⎝1 − exp

⎛⎝−
x+t∫
x

f

⎞⎠⎞⎠ |φ(x)|dx +
t∫

0

|φ(x)|dx.

The last two integrals tend to zero when t → 0+ by Lebesgue’s dominated convergence 
theorem. Hence, we focus on the first integral which is linked to the strong continuity for 
the right translation semigroup. Let us repeat the argument. For φ continuous with compact 
support, φ is uniformly continuous which implies that ‖φ(· + t) − φ‖∞ → 0. Let us denote 
by K a compact which contains the support of φ(· + t) − φ for t ∈ [0, 1]. One then obtains 
that ‖φ(· + t) − φ‖X ≤ l(K) ‖φ(· + t) − φ‖∞ → 0 as t → 0+. We finally conclude that 
the first integral tends to zero for φ ∈ X by density in X of the continuous functions with 
compact support.

2. We start by showing that μId−A0 is injective for μ ∈C. Let us consider ψ ∈ ker (μId − A0). 

Then for any x0 > 0, one finds ψ(x) = exp
(
− 1

a∞
∫ x

x0
(f + μ)

)
ψ(x0). From ψ(0) = 0, 

one gets that ψ = 0 and μId − A0 is injective. We now show that μId − A0 is surjec-
tive for μ > 0. For all φ ∈ X , as T0 is a contraction C0-semigroup, we can define 
ψ = ∫∞

0 e−μtT0(t)φ dt for μ > 0. From (7), we find the following expression

ψ(x) = g∞(x)

eμx/a∞

x∫
0

eμy/a∞

g∞(y)

φ(y)

a∞
dy.

It follows that ψ ∈ W 1
loc(R+) and ψ(0) = 0. Using Fubini theorem, we find that for all 

μ≥ 0:
814



A. Drogoul and R. Veltz Journal of Differential Equations 270 (2021) 809–842
a∞ ‖f ψ‖X ≤
∫
R2+

dxdy 1(y ≤ x)f (x)
g∞(x)

g∞(y)
e−μ(x−y)/a∞|φ(y)|

=
∞∫

0

dy|φ(y)|
⎡⎣ ∞∫

y

f (x)
g∞(x)

g∞(y)
e−μ(x−y)/a∞dx

⎤⎦
≤

∞∫
0

dy|φ(y)|
⎡⎣ ∞∫

y

f (x)
g∞(x)

g∞(y)
dx

⎤⎦≤ a∞ ‖φ‖X . (8)

For the last equality, we used that 
∫∞
y

f (x)
g∞(x)
g∞(y)

dx =
[
−a∞ exp

(
− 1

a∞
∫ x

y
f
)]∞

y
≤ a∞. 

This implies that fψ ∈ X . From the expression of ψ , we get:

a∞ψ ′ = −f ψ + φ − μψ ∈X

which implies that ψ ′ ∈ X . We have shown that ψ ∈ D(A0) and (μId − A0)ψ = φ namely 
that μId − A0 is surjective for μ > 0. Therefore, we have shown that ∀φ ∈ X , μ > 0, ∫∞

0 e−μtT0(t)φdt = (μId − A0)
−1φ. This proves point 2. Note that ψ belongs to X for all 

φ ∈X when for μ = 0 which implies iR ⊂ ρ(A0) and we can also write the inequality (8)
as:

∀ μ ≥ 0,

∣∣∣a (R(μ,A0)φ)

∣∣∣≤ ‖f R(μ,A0)φ‖X ≤ ‖φ‖X . (9)

3. We now compute the growth bound ω0
def= inf{ω ∈ R : ∃Mω ≥ 1 such that ‖T(t)‖L(X ) ≤

Mωeωt , ∀t ≥ 0} = lim
t→∞

1
t

log‖T0(t)‖L(X ). From

‖T0(t)φ‖X =
∞∫

0

exp

⎛⎝− 1

a∞

x+a∞t∫
x

f

⎞⎠ |φ(x)|dx,

we find

‖T0(t)‖L(X ) = sup
x≥0

⎡⎣exp

⎛⎝− 1

a∞

x+a∞t∫
x

f

⎞⎠⎤⎦= exp

⎛⎝− 1

a∞

a∞t∫
0

f

⎞⎠ .

Using Assumption 1, it gives ω0 = lim
t→∞

1
t

log‖T0(t)‖L(X ) = −∞ from which it follows that 

	(A0) = ∅.
4. We first note that D(A0) ⊂ D(B). We can then compute for all μ ∈C>0

‖BR(μ,A0)φ‖X = ∥∥g′∞
∥∥
X · |a (R(μ,A0)φ) | (9)≤ ∥∥g′∞

∥∥
X ‖φ‖X (10)

which shows that
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‖Bφ‖X ≤ ∥∥g′∞
∥∥
X ‖(μ − A0)φ‖X , ∀φ ∈ D(A0).

Similarly, one has that ‖A0Bφ‖X = O
(‖(μ − A0)φ‖X

)
for φ ∈ D(A0). Hence, B is con-

tinuous on the Sobolev space XA0
1

def= (D(A0),‖(μ − A0)·‖X ), i.e. B ∈ L(XA0
1 ). We can 

thus conclude that A generates a C0-semigroup on X using Corollary 4.10 in [18]. To show 
that (T(t))t≥0 is positive, one needs to show that R(μ, A) is positive for μ large enough. 
This resolvent is computed in the next proposition and is given by (11). Using Lebesgue’s 

dominated convergence theorem in (8), we find that |a(R(μ, A0)g
′∞)| μ→∞−→ 0. Together 

with R(μ, A0) being positive, this implies that the resolvent R(μ, A) is positive for μ large 
enough and that (T(t))t≥0 is positive on X .

3.2. Spectral properties

We shall now investigate the asymptotic behavior of the solution of (3) through the analysis of 
the spectrum 	(A) of the infinitesimal generator A. This is achieved in the following proposition 
by looking at the spectral bound s(A) and by taking advantage of the positivity of the semigroup 
(T(t))t≥0.

Proposition 3.2. Grant Assumption 1. The following spectral properties for the generator A hold 
true:

1. the spectrum of (A, D(A)) is composed of isolated eigenvalues μ solutions of

�(μ)
def= 1 + a

(
R(μ,A0)g

′∞
)= 1 − 1

a2∞

∞∫
0

dxf (x)g∞(x)

x∫
0

f (y)e
− μ

a∞ (x−y)
dy = 0,

2. 0 is a simple eigenvalue of A and the spectral bound s(A) = 0 belongs to 	(A), hence 
	(A) ⊂ C≤0,

3. 	(A) ∩ iR = {0}.

Proof.

1. Let us consider μ ∈ C. Since 	(A0) = ∅, solving (μ · Id − A)φ = ψ with ψ ∈ X is equiv-
alent to solving φ − R(μ, A0)Bφ = R(μ, A0)ψ . It follows that φ exists if and only if 
1 + a

(
R(μ,A0)g

′∞
) �= 0 which gives 	(A) = {μ ∈C, 1 + a

(
R(μ,A0)g

′∞
)= 0}. The func-

tion � is holomorphic which implies that its zeros are isolated. Finally, the spectrum is com-
posed of eigenvalues μk as one can check that the eigenvectors are given by R(μk, A0)g

′∞
using the eigenvector equation φ = R(μ, A0)Bφ for each zero μk of �. When μ /∈ 	(A), 
the resolvent reads:

φ = R(μ,A)ψ = R(μ,A0)

(
ψ − a (R(μ,A0)ψ)

1 + a
(
R(μ,A0)g′∞

)g′∞

)
. (11)

2. The semigroup (T(t))t≥0 being positive, the spectral bound s(A) of its generator A belongs 
to the spectrum of A: s(A) ∈ 	(A) ∩ R. Hence using the previous item (1), we are looking 
816
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Fig. 1. Left: Rightmost part of the spectrum of A (stars) and A| (circle) for f (x) = x2. Computed using collocation 
methods provided by the Julia package ApproxFun.jl (see [36]). Right: Plot of the cut-off function ρ.

for s(A) as the maximal real eigenvalue. One finds that � is strictly increasing on R and that 
�(0) = 0. Indeed:

�(0) = 1 + 1

a∞

∞∫
0

g′∞(y)

y∫
0

f = 1 − 1

a∞

∞∫
0

g∞f
def= 0.

Hence, s(A) = 0. Finally �′(0) �= 0 implies that 0 is a simple eigenvalue.
3. From (11), the spectrum is composed of poles of the resolvent. It follows from Theorem VI-

1.12 in [31] and the positivity of (T(t))t≥0, that the boundary spectrum 	(A) ∩ (s(A) + iR)

is cyclic, meaning that if there is α ∈ R such that s(A) + iα ∈ 	(A), then s(A) + ikα ∈ 	(A)

for all k ∈Z. We consider �(it) for t ∈R. Using Riemann-Lebesgue theorem and Lebesgue 

dominated theorem, we have �(it) 
t→±∞−→ 1. This implies that α = 0 and 	(A) ∩ iR = {0}.

A numerical example of the spectrum is shown in Fig. 1 Left. The fact that 0 ∈ 	(A) is easily 
seen from the existence of the family of equilibria (2). The flow associated with (1), stemming 
from the distribution of a stochastic process, conserves the integral of g. In fact, it can be shown 
that this property also holds true for the semigroup T(t) as well. Hence, it is convenient to define

X̂ =
⎧⎨⎩φ ∈ X |

∞∫
0

φ = 0

⎫⎬⎭ .

Next, we compute the spectral projector associated with the zero eigenvalue. This will be useful 
in the last section on nonlinear stability. We recall (see Theorem III.6.17 in [32]) some basic facts 
about the Riesz-Dunford spectral projector. If there exists a rectifiable, simple, closed curve γ
which encloses an open set containing the eigenvalue 0 in its interior and 	(A) \{0} in its exterior, 
then the Riesz-Dunford spectral projector P0 :X → ker(A) is defined by P0 = 1

2iπ

∫
γ

R(λ, A)dλ. 
It is the unique spectral projector on ker(A) which commutes with A. In our case, such γ exists 
because 0 ∈ 	(A) is isolated.
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Proposition 3.3. The Riesz-Dunford spectral projector for the zero eigenvalue is

∀φ ∈ X , P0φ = I (φ)

I (R(0,A0)g′∞)
R(0,A0)g

′∞.

Hence Ran(Id − P0) = X̂ . Also, P0 and T(t) commute.

Proof. Using an integration by parts, one has the following formula from Lemma B.1

∀μ ∈C, ∀φ ∈ X , a(R(μ,A0)φ) = −μI (R(μ,A0)φ) + I (φ). (12)

Combining the resolvent expression (11) with (12), we find ∀φ ∈ X :

lim
λ→0

λR(λ,A)φ = I (φ)

I (R(0,A0)g′∞)
R(0,A0)g

′∞.

The Riesz-Dunford projector P0 is the residue of R(λ, A) at λ = 0 which provides the expression 
of the projector using the above limit. The statement about the range of Id − P0 is direct. As P0
can be expressed as an integral of the resolvent in the complex domain, the commutation of P0
and T(t) is a consequence of the Post–Widder Inversion Formula. Let us show it directly. P0 and 
T(t) commute if and only if I (T(t)φ) = I (φ) for all t ≥ 0 and φ ∈ X . If φ ∈ D(A), one has, 
using an integration by parts, that d

dt
I (T(t)φ)) = I (AT(t)φ) = 0. Hence, I (T(t)φ) = I (φ) for 

φ ∈ D(A). It is then also true for φ ∈ X by density of D(A) in X .

We are now ready to give the main result of this section concerning the asymptotic behavior 
of the linear equation (3).

Theorem 3.1. There is a spectral decomposition of X into flow invariant subspaces:

X = R · e ⊕ X̂

associated with the projector P0 where e 
def= R(0, A0)g

′∞ is an eigenvector for the eigenvalue 
0. We write A| (resp. (T|(t))t≥0) the part of A (resp. (T(t))t≥0) in X̂ . One has s(A|) < 0 and 
(T|(t))t≥0 is uniformly exponentially stable i.e. for every positive ε small enough, there is a 
constant Mε ≥ 1 such that for all t ≥ 0

‖T(t) − P0‖L(X ) = ∥∥T|(t)
∥∥
L(X )

≤ Mεe
(s(A|)+ε)t . (13)

Finally, we have the following result concerning the spectral radius sup
λ∈	(T|(t))

|λ| = es(A|)t < 1.

Proof. The spectral decomposition into spaces invariant by A is a consequence of the previous 
proposition concerning the Riesz-Dunford projector and of [32] Theorem 6.17. This theorem 
also implies that 	(A|) = 	(A) \ {0} whence sup	(A|) < 0. Also, P0 commutes with T(t)

so that the semigroup T|(t) belongs to L(X̂ ). Hence, the subspaces are flow invariant. We now 
prove that the spectral bound s(A|) equals the growth bound ω0(T|). This is a consequence of 
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Theorem-12.17 in [33,34] as X̂ is an AL-space, i.e. the norm satisfies ‖φ1 + φ2‖ = ‖φ1‖ + ‖φ2‖
for all φ1, φ2 ∈ X̂+, and (T|(t)) is a positive semigroup on X̂ . This gives the formula (13).

As ω0(T|) = s(A|), for all ε > 0 small enough, there is a constant Mε ≥ 1 such that ∥∥T|(t)
∥∥≤ Mεe

(s(A|)+ε)t . The Gelfand spectral radius theorem [35, VII.3.4] gives sup
λ∈	(T|(t))

|λ| =

lim
n

n
√∥∥T|(nt)

∥∥ ≤ e(s(A|)+ε)t . As ε is arbitrary, this gives sup
λ∈	(T|(t))

|λ| ≤ es(A|)t . The equality 

follows from the existence of an eigenvalue λ1 such that λ1 = s(A|).

3.3. Sobolev spaces

We collect here some results concerning the Sobolev spaces associated with A. This is very 
helpful as climbing up the Sobolev spaces of A, solutions gain regularity while the asymptotic 
properties of the semigroup remain the same. However, the Sobolev norm for A0 is much simpler 
than the one for A and this is why we spend some time relating the Sobolev spaces of A and A0.

Lemma 3.1. Grant Assumption 1. For the operators A0 and A defined in (4) and (6), we have 
the following properties:

1. for n ∈ {1, 2}, XA
n = XA0

n with equivalent norms,

2. for n ∈ {1, 2}, A restricted to XA0
n generates a C0–semigroup,

3. we have: XA0
1 = {φ ∈ X , φ′ ∈ X , f φ ∈ X , φ(0) = 0} endowed with the norm ‖ · ‖1,A0 =

‖A0 · ‖X . The XA0
1 –norm is equivalent to the norm

‖φ‖1 = ‖φ‖X + ‖φ′‖X + ‖f φ‖X ,

4. we have: XA0
2 = {φ ∈ X , φ′′ ∈ X , f φ′ ∈ X , f 2φ ∈ X , φ(0) = φ′(0) = 0} endowed with 

the norm ‖ · ‖2,A0 = ‖A2
0 · ‖X . The XA0

2 –norm is equivalent to the norm

‖φ‖2 = ‖φ‖X + ‖f 2φ‖X + ‖f φ′‖X + ‖φ′′‖X ,

5. for n ∈ {1, 2}, the Sobolev spaces 
(
XCα

n

)
α>0

associated to Cα = −∂x − αMf are the same, 

with equivalent norms.

Proof. See appendix D.

To shorten notations, since the XA0
n and XA

n norms are equivalent for n ∈ {1, 2}, we write 
‖ · ‖n,A = ‖An

0 · ‖X .

4. Nonlinear stability

This section establishes the local exponential convergence of the solution g of (1) to g∞, 
for all initial conditions g0 = g∞ + φ with φ close to zero and of zero integral. The proof also 
works for any gα . This result improves on some points those in [2] where it was shown that 
‖g(t) − g∞‖L1 = O

(
(1 + t)−1/ξ

)
if f (x) ≥ xξ for all x ∈ [0, 1] where c > 0, ξ ≥ 1, and for all 
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initial condition g0 ∈ L1+(R+) of integral one such that g(0) = 1, g0 ∈ C1
b(R+), 

∫∞
0 f 2g0 < ∞

and 
∫∞

0 |g′
0| < ∞.

4.1. Difficulties and strategy

The general strategy is similar to that in [37,38]: we apply a Picard like iteration scheme to 
the nonlinear semigroup of solutions at some time t0 to show that it converges to a fixed point. To 
this end, we need to build a nonlinear semigroup of solutions of (1) which is differentiable. Such 
semigroup can be found in [2] but the differentiability was not investigated. Here we construct a 
semigroup using a different method by means of a fixed point argument based on the computation 
of the instantaneous rate function a(g(t)). Doing so requires g to be integrable against f . The 
Picard iteration additionally requires g to be integrable against f 2 similar to the requirement 
mentioned above at the beginning of the section. The smallest Sobolev space satisfying this is 
XA0

2 in which we solve (1). The second requirement in applying [37,38] is differentiability of 

the nonlinear semigroup. However, the nonlinear flow of (1) is not differentiable in XA0
2 . Indeed, 

from [2] or using the method of characteristics, its (implicit) expression can be found to be:

g(t, x) = exp

⎛⎜⎝ t∫
βt (x)

−f (φβt (x),s(0))ds

⎞⎟⎠1x≤A(t)

+ g0(x − A(t)) exp

⎛⎝ t∫
0

−f (φ0,s (x − A(t)))ds

⎞⎠1x>A(t)

with A(t) = ∫ t

0 a, φs,t (x) = x + ∫ t

s
a and βt (x) such that 

∫ t

βt (x)
a = x for x ≤ A(t). Moreover 

a(t) solves the fixed point equation a(t) = ∫∞
0 fg(t). One can show that for T > 0, the mapping 

φ → a is C1 from a neighborhood of g∞ in XA
2 into C0([0, T ]). However, for all t > 0, the 

mapping φ → φ(· − A(t)) is not even Lipschitz from XA
2 to itself and so is the flow as well. 

To overcome this problem and inspired by [39], we perform a change of variable in time in (1). 
Roughly speaking, we set h(τ(t), x) = g(t, x) with τ = ∫ t

0 a(g)(s)ds. This change of variable 
is possible only if τ(t) is invertible or equivalently if t → a(g)(t) is strictly positive. Hence, we 
modify the vector field in order to insure that this condition is met. We then show that this defines 
a new flow which is differentiable and which enables to characterize the asymptotic behavior of 
the initial one.

4.2. Time rescaling

In order to perform a time rescaling, we introduce the following cut-off function which is 
strictly positive and locally identical to a(g) if this latter is close enough to a∞:

ã(g) = a∞ + ρη(a(g) − a∞), with

⎧⎪⎨⎪⎩
ρη(x) = x if |x| ≤ a∞ − 2η

|ρη(x)| ≤ a∞ − η ∀x ∈R

ρη ∈ C1(R) non decreasing and ‖ρ′
η‖C0(R) < ∞

(14)
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where η is a constant such that 0 < η < a∞
2 (see Fig. 1). We shall write ρ for ρη when no 

confusion is possible. Note that whenever possible, we also write ̃a(t) for ̃a(g(t)) or for a∞ +
ρη(a(t)) (in case a ∈ C0(R+, R)). We have

0 < a
def= η ≤ ã(t) ≤ 2a∞ − η

def= ā. (15)

Let us now formally perform the time rescaling:

h(τ(t), x)
def= g̃(t, x) with τ(t) =

t∫
0

ã(g̃(s, ·))ds,

where ̃g is solution of (1) upon replacing a(g) by ̃a(g). Thanks to the cutoff, τ is invertible and 
h(τ, x) solves {

∂τh(τ, x) + ∂xh(τ, x) = − f (x)
ã(h(τ,·))h(τ, x), x, τ > 0

h(t,0) = 1.
(16)

We remove the boundary condition by translating the problem around g∞, h = g∞ + u, it gives:{
∂τ u(τ, x) = −∂xu(τ, x) − f (x)u(τ,x)

a∞+ρ(a(u(τ)))
+
(

1
a∞ − 1

a∞+ρ(a(u(τ)))

)
fg∞, x, τ > 0

u(τ,0) = 0.
(17)

After this formal time rescaling, we plan to prove the differentiability of the nonlinear semigroup 
associated with the flow of (17). In section 4.3, we set the mathematical framework for the 
analysis of (17) and prove the existence of the nonlinear semigroup as follows. First, we consider 
the non-autonomous problem on X :{ .

u(t) = A(t)u(t), t > s ≥ 0

u(s) = φ
(NAH)

A(t)ψ = −ψ ′ − f ψ

a∞ + ρ(a(t))
, ψ ∈ D(A(t)) = XA0

1 (18)

for a ∈ C0([s, T ]). We show the well-posedness of (NAH) in the sense that it admits a 
XA

2 –valued solution (Definition 3) written u(t) = Ua(t, s)φ. Then, we consider the inhomo-
geneous problem: { .

u(t) = A(t)u(t) + ga(t), t > s ≥ 0

u(s) = φ
(NAIH)

with

ga(t)
def=
(

1 − 1
)

fg∞. (19)

a∞ a∞ + ρ(a(t))
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We show that it admits a XA
2 –valued solution u(t) = Va(t, s)φ. In a last step, we establish 

the existence and uniqueness of a solution of the fixed point equation a(t) = ∫∞
0 f Va(t, s)φ

in C0
b([s, ∞)) for φ ∈ XA

2 and conclude by the existence of the nonlinear semigroup namely 
(Sr (t))t≥0 associated with the flow of (NAIH) with a(t) solution of this fixed point equation. 
In section 4.4, we show the Fréchet differentiability of Sr(t) and establish the local exponential 
stability of 0. Finally, in section 4.5, we link the asymptotic behavior of the solution of the 
rescaled problem (17) to the initial one (1).

4.3. Solution of the rescaled equation

For s ≥ 0 and a ∈ C0([s, ∞)), we introduce a family of bounded operators (Ua(t, s))t≥s on 
X defined by

(Ua(t, s)φ)(x)
def= exp

⎛⎝−
t∫

s

f (v + x − t)

a∞ + ρ(a(v))
dv

⎞⎠H(x − t + s)φ(x − t + s), ∀φ ∈X . (20)

For ā > 0, up to some abuse of notation, we also define the following contraction C0-semigroup 
(Uā(t))t≥0 on X :

(Uā(t)φ)(x)
def= exp

⎛⎝−1

ā

x∫
x−t

f

⎞⎠H(x − t)φ(x − t)

with generator1 (Ā, XA
1 ) where Āφ = −φ′ − 1

ā
f φ (see Proposition 3.2). Finally, we introduce 

the solution of the inhomogeneous problem (NAIH)

Va(t, s)φ
def= Ua(t, s)φ +

t∫
s

Ua(t, r)ga(r)dr, t ≥ s. (21)

Remark 2.

• From (15), we find Ua(t, s) ≤ Uā(t − s).
• Let us note that a is seen through the cutoff in the semigroups Ua(t, s), Va(t, s) and the 

function ga . Hence Ua(t, s) and Va(t, s) are well defined for t ≥ s ≥ 0 and a ∈ C0(R+, R).

The following proposition establishes the well-posedness of (NAH) as there is an evolution 
family which solves (NAH) in the space XA

2 i.e. it leaves XA
2 invariant. Moreover this solu-

tion also belongs to the smaller space C0(R+, XA
2 ) in effect giving an XA

2 -valued solution (see 
Definition 3).

Proposition 4.1. Grant Assumption 1. For s ≥ 0, let a ∈ C0([s, ∞)), then (Ua(t, s))t≥s is an 
evolution family of contractions on X . It is the unique family which solves the Cauchy problem 

1 Actually its domain is X Ā but X Ā = XA by Lemma 3.1.
1 1 1
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(NAH) on XA
2 . More precisely, for φ ∈ XA

2 , Ua(t, s)φ is the unique XA
2 –valued solution of 

the initial value problem (NAH) and there is a constant C > 0, independent of a, such that 
∀(t, s) ∈ R2+, t ≥ s, ∀φ ∈XA

2 :

‖Ua(t, s)φ‖2,A ≤ C‖φ‖2,A. (22)

Proof. The proof of the fact that (Ua(t, s))t≥s is an evolution family of contractions on X is 
direct. We focus on showing that Ua(t, s)φ is a XA

2 –valued solution for φ ∈ XA
2 which implies 

that it solves (NAH) on XA
2 . We first note that XA

2 is densely and continuously embedded in X
and that XA

2 ⊂ D(A(t)) as a consequence of Lemma 3.1 and of the fact that ̃a is positive bounded 
with values in [a, ā].

First step. Let us prove that for 0 ≤ s ≤ t , Ua(t, s)XA
2 ⊂ XA

2 . It is indeed needed to identify a 
subset of the domain of A(t) to define a (classical) solution. This is a consequence of Lemma E.2
from which it also follows that there is a constant C > 0 such that for all t ≥ s ≥ 0 and φ ∈ XA

2 , 
‖Ua(t, s)φ‖2,A ≤ C‖φ‖2,A. Hence, Ua(t, s) leaves XA

2 invariant and is bounded on XA
2 .

Second step. We sketch the proof of the strong continuity of the family on XA
2 as it 

is very similar to the one of Lemma E.2. This property is useful in the fourth step of the 
proof of the proposition. One needs to show that ∀φ ∈ XA

2 , ‖Ua(t
′, s′)φ − Ua(t, s)φ‖2,A → 0

when (t ′, s′) → (t, s). By dominating the terms Ua(t, s)φ, f 2Ua(t, s)φ, f (Ua(t, s)φ)′ and 
(Ua(t, s)φ)′′ as done in the proof of Lemma E.2, and using Lebesgue dominated conver-
gence, we obtain the strong continuity. In particular, this yields an evolution family on XA

2 and 
t → Ua(t, s)φ ∈ C0([s, ∞), XA

2 ).
Third step. For φ ∈ XA

2 , we prove that t → u(t) = Ua(t, s)φ is differentiable in X for t ≥ s. 
We first focus on the right-derivative and thus consider the difference quotient h−1(Ua(t +h, s) −
Ua(t, s)) = h−1(Ua(t +h, t) − Id)Ua(t, s) for h > 0. We write Ua(t +h, t)φ = Tr (h)v(h) with 

v(h) 
def= exp

(
− ∫ h

0
f (·+z)
ã(t+z)

dz
)

φ and where (Tr (t))t≥0 is the C0-semigroup of right translations. 

We find that v(h) ∈ {ϕ ∈ W 1,1(R+), ϕ(0) = 0} ⊂X which is the domain of the generator of Tr . 
We also note that v is differentiable at 0 in X thanks to Lemma E.3. We can thus conclude that 
h → Ua(t + h, t)ψ is differentiable at 0 in X . Indeed: (Tr (h)v(h) − v(0))/h = Tr (h)(v(h) −
v(0))/h + (Tr (h) − Id)v(0)/h. Each term has a limit thanks to the strong continuity of Tr and 

v(0) belonging to the domain of the generator of Tr . We thus find that ∂+
∂t

Ua(t + h, t)φ

∣∣∣
h=0

=
− f φ

ã(t)
− ∂xφ = A(t)φ from which it follows that

∂+

∂t
Ua(t, s)φ = A(t)Ua(t, s)φ. (23)

The mapping t → A(t) is continuous in L(XA
2 , X ) using Lemma C.1 since A(t) − A(s) =

− 
(

1
ã(t)

− 1
ã(s)

)
Mf . The right-hand side of (23) is continuous in X since t → Ua(t, s)φ is 

continuous in XA
2 and t → A(t) is continuous in L(XA

2 , X ). Therefore the right-derivative of 
Ua(t, s)φ is continuous in X and t → Ua(t, s)φ is continuously derivable in X . We have shown 
that u belongs to C0([0, T ], XA

2 ) ∩ C1((0, T ], X )) and that it is a XA
2 -valued solution of the 

initial value problem (NAH).
Fourth step. We show here uniqueness of the solution of (NAH) by showing that ∂

∂s
Ua(t, s)φ =

−Ua(t, s)A(s)φ for φ ∈ XA. We have ∂+
Ua(t, s)φ = limh↓0 Ua(t, s + h) 

(
φ−Ua(s+h,s)φ

)
=
2 ∂s h
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−Ua(t, s)A(s)φ by the third step. We use the same argument as in the previous step to show 
that s → Ua(t, s)φ is continuously derivable in X and that ∂

∂s
Ua(t, s)φ = −Ua(t, s)A(s)φ for 

φ ∈ XA
2 . We then proceed as in the proof of Theorem V.4.2 in [7]. If u is a XA

2 -valued solution 
of (NAH), r → Ua(t, r)u(r) is continuously differentiable in X with zero differential. This im-
plies that u(t) = Ua(t, s)φ and this gives uniqueness of the solution of (NAH). Finally, (22) was 
proved in Lemma E.2.

Proposition 4.2. Grant Assumptions 1 and 2. Let s ≥ 0, a ∈ C0([s, ∞)) and φ ∈ XA
2 , then 

(NAIH) has a unique XA
2 -valued solution given by (21). Moreover there exists a constant C > 0

independent of a such that for all t ≥ s ≥ 0 and φ ∈XA
2 :

‖Va(t, s)φ‖2,A ≤ C
(‖a‖C0([s,t]) + ‖φ‖2,A

)
. (24)

Proof. This is an adaptation of the proof of Theorem V.5.2 in [7]. Uniqueness of a solution of 
(NAIH) is a direct consequence of the previous proposition. To show that Va(t, s)φ is a XA

2 -
valued solution, we have to show that w(t) = ∫ t

s
Ua(t, r)ga(r)dr, t ≥ s is a XA

2 -valued solution 
with initial value w(s) = 0. We first note that ga ∈ C0(R+, XA

2 ) under Assumption 2 which 
implies that w(t) ∈XA

2 . The continuity of r → Ua(t, r)ga(r) in XA
2 for s ≤ r ≤ t implies that w

is continuous in XA
2 and that r → A(t)Ua(t, r)ga(r) is continuous in X . This implies that w is 

continuously differentiable in X and that d
dt

w(t) = A(t)w(t) + ga(t) in X as desired.
From (E.2b), there is a constant C > 0 independent of a such that

‖Va(t, s)φ‖2,A ≤ C(‖ρ(a)‖C0([s,t]) + ‖φ‖2,A) ≤ C(‖a‖C0([s,t])
∥∥ρ′∥∥∞ + ‖φ‖2,A)

�
(‖a‖C0([s,t]) + ‖φ‖2,A

)
which yields the inequality (24).

The sequel of this section is devoted to solving the Volterra-like fixed point equation a(t) =∫∞
0 f Va(t, s)φ in some Banach space that we shall now precise. For φ ∈ XA

2 , we introduce the 
mapping Ts,φ :

Ts,φ : C0([s,∞)) −→ C0
b([s,∞))

c −→ a(Vc(·, s)φ).
(25)

Proposition 4.3. Grant Assumptions 1 and 2. There exists C > 0 such that for all φ ∈ XA
2 and 

for all s ≥ 0, the mapping Ts,φ is a contraction on C0([s, s + δ]) provided that 0 < δ < 1 and 

that δ < C
(
1 + ‖φ‖2,A

)−1
.

Proof. For s ≥ 0, δ > 0 and φ ∈ XA
2 , let us show that Ts,φ leaves C0([s, s + δ]) invariant. For 

a ∈ C0([s, s + δ]), Proposition 4.2 implies that t → Va(t, s)φ belongs to C0([s, s + δ], XA
2 ). By 

continuity of Mf from XA
2 to X , we find that Ts,φ(a) ∈ C0([s, s + δ]). For δ > 0, we estimate 

the C0–norm of Ts,φ(a2) − Ts,φ(a1) using (21) for a1, a2 ∈ C0([s, s + δ]):
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Ts,φ(a2)(t) − Ts,φ(a1)(t) = a((Ua2(t, s) − Ua1(t, s))φ)+

a
( t∫

s

Ua2(t, r)(ga2(r) − ga1(r))dr
)

+ a
( t∫

s

(Ua2(t, r) − Ua1(t, r))ga1(r)dr
)
.

Using that 0 < a ≤ ã ≤ ā from the definition of the cut off (14), we find ∀t ∈ [s, s + δ]:

∣∣(Ua2(t, s) − Ua1(t, s))φ
∣∣≤ 1

a2 (t − s)‖̃a2 − ã1‖C0([s,s+δ])f Uā(t − s)|φ|.

From the above inequality and Remark 1, we get two bounds:

a((Ua2(t, s) − Ua1(t, s))φ)

≤ 1

a2 (t − s)‖̃a2 − ã1‖C0([s,s+δ])‖f 2Uā(t − s)|φ|‖X
� (1 + ‖φ‖X + ‖f 2φ‖X )(t − s)‖̃a2 − ã1‖C0([s,s+δ])

a
( t∫

s

(Ua2(t, r) − Ua1(t, r))ga1(r)dr
)

≤ 1

a2 ‖̃a2 − ã1‖C0([s,s+δ])a
(
f

t∫
s

(t − r)Uā(t − r)ga1(r)dr
)
,

� ‖̃a2 − ã1‖C0([s,s+δ])(t − s)2
∥∥∥f 3g∞

∥∥∥
X
� ‖̃a2 − ã1‖C0([s,s+δ])(t − s)2

δ<1
� ‖̃a2 − ã1‖C0([s,s+δ])(t − s).

Similarly

a
( t∫

s

Ua2(t, r)(ga2(r) − ga1(r))dr
)
� ‖̃a2 − ã1‖C0([s,s+δ])a

( t∫
s

Uā(t − r)(fg∞)dr
)

� ‖̃a2 − ã1‖C0([s,s+δ])(t − s)

∥∥∥f 2g∞
∥∥∥
X

.

Hence, if δ < 1, the Lipschitz constant k(φ) of Ts,φ on C0([s, s + δ]) reads k(φ) =
C
(
1 + ‖φ‖X + ‖f 2φ‖X

)
δ

Lemma C.1≤ C(1 + ‖φ‖2,A)δ with C independent of φ, s and δ. It goes 
to zero when δ → 0. We can thus choose δ for Ts,φ to be a contraction.

Theorem 4.1. Grant Assumptions 1 and 2. For each φ ∈ XA
2 and s ≥ 0, there is a unique solu-

tion a ∈ C0
b([s, ∞)) of Ts,φ(a) = a. Moreover, v : t → Va(t, s)φ belongs to C0

b([s, ∞), XA
2 ) ∩

C1((s, ∞), X ) and solves
825
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⎧⎪⎨⎪⎩∂tv + ∂xv = − f v

ã(g∞ + v)
+ fg∞

(
1

ã(g∞ + v)
− 1

a∞

)
, t > s, x > 0,

v(s) = φ.

(26)

Proof. Let φ ∈ XA
2 , Proposition 4.3 and the Picard Theorem give the existence of an increasing 

sequence (sn)n∈N such that the differences si − si−1 satisfy

si − si−1 = min

(
C

2
(1 + ‖φi−1‖2,A)−1,

1

2

)
, s0 = s

where C is the constant from Proposition 4.3 and φ0
def= φ, φi+1

def= Vai+1(si+1, si)φi with ai+1
solution of ai+1 = Tsi ,φi

(ai+1) in C0([si , si+1]) for i ≥ 0. For i ≥ 1, we note that

ai+1(si) = Tsi ,φi
(ai+1)(si) = a(φi)

= a(Vai
(si , si−1)φi−1) = Tsi−1,φi−1(ai)(si) = ai(si).

Hence, if we define a
def= ai on [si−1, si) for all i ≥ 1, we have that a ∈ C0([s, limn sn)). We also 

have that φi = Va(si , s)φ0 which implies that for i ≥ 1 and t ∈ [si−1, si]:

Ts,φ(a)(t) = a(Va(t, s)φ) = a(Va(t, si−1)φi−1) = Tsi−1,φi−1(ai)(t)

= ai(t) = a(t).

Hence, a is the unique fixed point of Ts,φ in C0([s, limn sn)). It follows that ∀i ≥ 1, ‖φi‖2,A =
‖Va(si , s)φ0‖2,A

(E.2b)≤ CV (1 + ‖φ0‖2,A). Hence, si − si−1 ≥ min
( 1

2 ,C(1 + ‖φ0‖2,A)−1
)

for 
some new constant C > 0 and limn sn = +∞.

The boundedness of a results from (D.1) and (E.2b): a ∈ C0
b([s, ∞)). Let us define v(t) 

def=
Va(t, s)φ which solves (thanks to Proposition 4.2) the problem (NAIH) with the denominator 
a∞ +ρ(a(t)) = a∞ +ρ(a(v(t))) = ã(g∞ +v(t)) by definition of the fixed point a. Then v solves 
the problem (26) as a XA

2 –valued solution (i.e. it belongs to C0
b([s, ∞), XA

2 ) ∩ C1(]s, ∞), X )).

Based on the previous theorem, we introduce the mapping:

XA
2 → C0

b([0,∞))

A : φ → A(φ)
(27)

where A(φ) is the fixed point of T0,φ . Note that A(0) = 0. We also define the nonlinear semi-
group (Sr (t))t≥0 for the rescaled equation (26):

XA
2 → XA

2
Sr (t) : φ → VA(φ)(t,0)φ.

(28)

The function t → Sr (t)φ is the unique XA
2 -valued solution of (26) with s = 0. Note that it 

satisfies Sr (t)0 = 0 for all t ≥ 0.
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4.4. Convergence to the equilibrium g∞

We now study the differentiability of the nonlinear semigroup Sr . We start with the regularity 
of the co-restriction of the map A with values in C0([0, t]) for t > 0.

Lemma 4.1. Grant Assumptions 1 and 2. There are t > 0 and a neighborhood V ⊂ XA
2 of 0

such that A belongs to C1(V, C0([0, s])) for all s ∈ [0, t]. Moreover, for all φ ∈ P0V and for all 
s ∈ [0, t], A(φ) is such that I

(
VA(φ)(s,0)φ

)= 0 meaning that Sr (s)φ ∈ X̂A
2 .

Proof. We note that T : (a, φ) → T0,φ(a) belongs to C1(C0([0, t]) × XA
2 , C0([0, t])) as con-

sequence of Proposition E.1 and of the continuity of Mf from XA
2 to X . We wish to apply the 

parametrized contracting mapping theorem (see [40]). For t < 1 small enough, one can chose 
R > 0 such that a → T (a, φ) is a C1 family of contractions with Lipschitz constant k(φ) in the 
first variable for φ ∈ BXA

2
(0, R). We have:

k(φ)
Prop. 4.3≤ tC(1 + R) < 1.

As a consequence of Theorem 3.2 in [40], A(φ), fixed point of T (·, φ), is C1 from BXA
2
(0, R)

into C0([0, t]) and the same holds on BX̂A
2
(0, R). This concludes the first part of the proof (the 

slightly more general result in the lemma is straightforward).
We now show how a neighborhood of 0 in XA

2 is mapped into a neighborhood of 0 in 
C0([0, t]). We use the fact that A is Lipschitz. Indeed, for all φ, ψ ∈ BXA

2
(0, R):

‖A(φ) −A(ψ)‖ ≤ ∥∥T0,φ(A(φ)) − T0,φ(A(ψ))
∥∥+ ∥∥T0,φ(A(ψ)) − T0,ψ (A(ψ))

∥∥
≤ tC(1 + R)‖A(φ) −A(ψ)‖ + ∥∥T0,φ(A(ψ)) − T0,ψ (A(ψ))

∥∥
(D.1) and (E.2a)≤ tC(1 + R)‖A(φ) −A(ψ)‖ + C ‖φ − ψ‖2,A

which gives ‖A(φ) −A(ψ)‖ ≤ C
1−tC(1+R)

‖φ − ψ‖2,A and A is Lipschitz on BXA
2
(0, R).

Let then V ⊂ BXA
2
(0, R) be small enough ensuring that A maps V into BC0(0, r) with r > 0

such that the cut-off function ρ defined in (14) satisfies ρ(x) = x for |x| ≤ r . It implies that 

A(φ) = ρ(A(φ)) for all φ in V . For φ ∈ P0V , we write I (t) = I (VA(φ)(t, 0)φ) and v(t) 
def=

VA(φ)(t, 0)φ. By hypothesis: I (0) = 0. As v ∈ C1((0, ∞), X ), we have that d
dt

I (v(t)) = I (v̇(t))

for all t > 0 and from Theorem 4.1:

d

dt
I (t) = I (

.
v(t)) = I (A(t)v(t) + gA(φ)(t))

= I

(
−v′(t) − f v(t)

a∞ +A(φ)(t)
−
(

1

a∞ +A(φ)(t)
− 1

a∞

)
fg∞

)
I.B.P .= −[v(∞, t) − v(0, t)] − I (f v(t))

a∞ +A(φ)(t)
+ A(φ)(t)

a∞ +A(φ)(t)
= A(φ)(t) −A(φ)(t)

a∞ +A(φ)(t)

= 0
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where we wrote v(∞, t) = lim
x→∞v(x, t) which is zero because v(·, t) ∈ W 1,1(R+). It follows 

that I (t) is constant for t > 0 hence equal to zero by continuity. This concludes the proof of the 
second part.

Proposition 4.4. Grant Assumptions 1 and 2. For t > 0 small enough, let P0V be the neighbor-
hood of 0 in X̂A

2 introduced in Lemma 4.1. The nonlinear semigroup Sr (s) evaluated at time 
s ∈ [0, t], belongs to C1(P0V, X̂A

2 ) and the Fréchet-differential of Sr(s)|X̂A
2

at 0 is T|(s/a∞). 
Finally, there is a constant C ≥ 1 such that ∀s ∈ [0, t], ∀φ ∈ V:

‖Sr (s)φ‖2,A ≤ C‖φ‖2,A. (29)

Proof. We first show that Sr (s) is differentiable. By Lemma 4.1, there exists t > 0 small 
enough and V ⊂ XA

2 such that A ∈ C1(V, C0([0, t])) and I (VA(φ)(s, 0)φ) = 0 for all φ ∈ P0V
and s ∈ [0, t]. Moreover for φ ∈ XA

2 and s ∈ [0, t], the mapping a → Va(s, 0)φ belongs to 
C1(C0([0, t]), XA

2 ) by Proposition E.1 and the mapping φ → Va(s, 0)φ is affine so is differen-
tiable. By composition, we deduce that ∀s ∈ [0, t], Sr (s) ∈ C1(V, XA

2 ). Moreover, for s ∈ [0, t]
Sr (s)P0V ⊂ X̂A

2 which gives d[Sr (s)](0) ∈ L(X̂A
2 ).

Let us now show that the Fréchet differential of Sr(s)|X̂A
2

at point 0 is T|(s/a∞). We first 
note that UA(φ)(t, 0)φ = Ua∞(t, 0)φ + o(φ). By differentiating A(φ) = a(Sr (·)φ), we obtain 

dA(0)φ = a(d[Sr (·)](0)φ) = a(u(·)) where u(s) 
def= d[Sr (s)](0)φ for all s ∈ [0, t]. By differen-

tiating φ → Sr (s)φ = VA(φ)(s, 0)φ at 0, we obtain from (21) that ∀s ∈ [0, t], φ ∈ P0V ,

u(s)
def= d[Sr (s)](0)φ = Ua∞(s,0)φ +

s∫
0

Ua∞(s, r)

(
fg∞
a2∞

)
dA(0)(φ)(r)dr

= T0

(
s

a∞

)
φ −

s∫
0

T0

(
s − r

a∞

)(
g′∞
a∞

)
a(u(r))dr

= T0

(
s

a∞

)
φ + 1

a∞

s∫
0

T0

(
s − r

a∞

)
B(u(r))dr.

We conclude that u(s) = T(s/a∞)φ from the uniqueness of the solution of (3). The fact that 
Sr (s)|X̂A

2
is defined on X̂A

2 implies that its differential is the part T|(s/a∞) of T(s/a∞) in X̂A
2 . 

Noting that A(0) = 0, the inequality (29) is obtained from (24) and using the fact that A is 
Lipschitz as shown in the proof of the previous proposition.

We are now ready to study the long term behavior of Sr .

Theorem 4.2. Grant Assumptions 1 and 2. The stationary solution 0 of (NAIH) is locally expo-
nentially stable in X̂A

2 that is there is ε0 > 0 such that for all 0 < ε < ε0, there is a neighborhood 
Vε ⊂ X̂A such that
2
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∃Cε ≥ 1 ∀φ ∈ Vε, ∀t ≥ 0 ‖Sr (t)φ‖2,A ≤ Cεe

(
s(A|)
a∞ +ε

)
t‖φ‖2,A. (30)

Proof. Using the notations of Proposition 4.4, let V ⊂ XA
2 be such that Sr (s) ∈ C1(P0V; X̂A

2 ). 
The Fréchet differential of Sr (s)|X̂A

2
at 0 is T|(s/a∞) ∈ L(X̂A

2 ) and its spectrum lies in a compact 
subset of the open unit disc, see Theorem 3.1. The theorem also provides the spectral radius of 
T|(s/a∞). We deduce from Theorem A.1 that there is ε0 > 0 such that for all 0 < ε < ε0, there 
is a neighborhood V ′ = B(0, R) of 0 in X̂A

2 and a constant C ≥ 1 such that

∀φ ∈ V ′, ∀n ∈N ‖Sr (s)
nφ‖2,A = ‖Sr (ns)φ‖2,A ≤ C (κ + ε)n ‖φ‖2,A

where κ
def= e

s(A|)
a∞ s ∈ (0, 1). Moreover, we have that Sr (s) : V ′ → V ′ by Theorem A.1. We define 

Vε
def= {φ ∈ V ′ , ‖φ‖2,A ≤ R/CL} where CL is the constant in (29). It follows that ∀φ ∈ Vε and 

∀q ∈ [0, s), Sr (q)φ ∈ V ′. We can thus decompose each t ≥ 0 as t = ns + q with q ∈ [0, s) and 
find Sr (t) = Sr (ns)Sr (q). It follows that:

∀φ ∈ Vε, ‖Sr (t)φ‖2,A≤C(κ + ε)n‖Sr (q)φ‖2,A
(29)≤ C′(κ + ε)n‖φ‖2,A.

Finally, we note that (κ + ε)n ≤ κnenε/κ and up to renaming ε, there is a constant C, independent 
of n, t , such that

‖Sr (t)φ‖2,A≤Ce

( s(A|)
a∞ +ε

)
t‖φ‖2,A.

4.5. Main result

In this section, we conclude with the main result concerning the nonlinear stability of (1).

Theorem 4.3. Grant Assumptions 1 and 2. The equilibrium 0 is locally exponentially stable with 
respect to (S(t))t≥0 in X̂A

2 .

Proof. Using Lemma 4.1 and the fact that A is Lipschitz, there is a neighborhood W ⊂ P0V of 
0 in X̂A

2 satisfying A(W) ⊂ BC0(0, r) with r such that ρ(x) = x for |x| ≤ r . Using Theorem 4.2, 
∀ε > 0 small enough, there is an open ball B(0, Rε) ⊂ W such that ∀t ≥ 0, Sr (t)B(0, Rε) ⊂ W . 
Hence, (Sr (t))t≥0 solves (26) on B(0, Rε) but with ̃a replaced by a.

As a consequence, for φ ∈ B(0, Rε), the function tφ(τ ) = ∫ τ

0
1

a(Sr (s)φ)
ds for τ ≥ 0 is well-

defined, positive, monotone and invertible. We can thus define S(τ )φ
def= g∞ + Sr (t

−1
φ (τ ))φ for 

all τ ≥ 0. It follows that (S(t))t≥0 solves (1). Thanks to Theorem 4.2, we have ∀φ ∈ B(0, Rε), 

∀t ≥ 0 ‖Sr (t)φ‖2,A ≤ Cεe

(
s(A|)
a∞ +ε

)
t ‖φ‖2,A. Then, we have:

‖S(t)φ − g∞‖2,A ≤ Cεe

(
s(A|)
a∞ +ε

)
t−1
φ (t) ≤ Cεe

(
s(A|)
a∞ +ε

)
ηt

where we used that ηt ≤ t−1(t) ≤ āt for η > 0, see (14). This concludes the proof.
φ
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The parameter 0 < η < a∞ entering in the definition of the cutoff ρη is arbitrary. Hence, we 
find that the exponential convergence of S(t) is Cεe

(
s(A|)+ε

)
t with ε > 0 small enough.

5. Discussion

In this work, we looked at the exponential stability of a recent mean-field limit of spiking neu-
ral network using tools from dynamical systems. This was made possible thanks to the fortunate 
positivity of the linearized semigroup and using a time rescaling trick from [39]. This allowed 
us to avoid using the center manifold theory which comes up naturally for this kind of equations 
because of the family of equilibria.

Note that our framework does not apply directly to the general case λ > 0 for several rea-
sons. Firstly, the boundary condition is less trivial than in our case but one can hope to build a 
semigroup of solutions using [41]. Secondly, the rescaling trick used to produce a differentiable 
semigroup does not work anymore. However, recent numerical evidences [6] suggest the exis-
tence of a Hopf bifurcation and probably of a center manifold. Thus, the present work hints at 
the difficulties for studying these numerical evidences using tools from semigroup theory.

Nevertheless, the present formalism would allow the study of more general situations when 
for example the spatial location of the neurons or propagation delays are taken into account 
[42,43].
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Appendix A. Definitions and results on general Cauchy problems

To be self-content, this section presents results taken from [7] that we use to show the well-
posedness of (NAH) and (NAIH). We start this section with some definitions about the linear 
non-autonomous initial value Cauchy problem{ .

u(t) = A(t)u(t) for 0 ≤ s < t,

u(s) = v
(nACP)

on a Banach space X .

Definition 1. [7] An X -valued function u : [s, T ] → X is called a classical solution of (nACP)
if u is continuous on [s, T ], u(t) ∈ D(A(t)) for 0 < s ≤ T , u is continuously differentiable in X
for 0 < s ≤ T and it satisfies (nACP).

To discuss basic properties of (nACP), we introduce the so-called evolution semigroup asso-
ciated with it.

Definition 2. [7] A family of bounded operators (U(t, s))t≥s on a Banach space X is called a 
strongly continuous evolution family if
830
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(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = Id for t ≥ r ≥ s ≥ 0 and
(ii) the mapping {(τ, σ) ∈ R2 : τ ≥ σ ≥ 0} � (t, s) → U(t, s) is strongly continuous meaning 

that ∀φ ∈X , 
∥∥U(t ′, s′)φ − U(t, s)φ

∥∥→ 0 as (t ′, s′) → (t, s).

Definition 3. Let Y ⊂ X be a Banach space that is densely and continuously embedded in X . 
A function u ∈ C0([s, T ], Y) is a Y-valued solution of the initial valued problem (nACP) if 
u ∈ C1(]s, T ], X ) and (nACP) is satisfied in X .

The following theorem states a sufficient condition for exponential stability of a stationary 
solution of a discrete dynamical system.

Theorem A.1. Let X be a Banach and V be a neighborhood of 0 in X . Let F : V → X be 
differentiable at 0 such that F(0) = 0. Let dF(0) = L ∈ L(X ) be its Fréchet derivative at 0. 

Assume that the spectrum of L lies in a compact subset of the open unit disc and define b
def=

sup
λ∈	(L)

|λ| < 1. Then for all ε ∈ (0, 1 − b), there is a neighborhood Uε ⊂ V of 0 and a constant 

Cε ≥ 1 such that for all x in Uε and n ∈N:

∥∥Fn(x)
∥∥≤ Cε (b + ε)n ‖x‖ .

Moreover, Uε is invariant by F.

Proof. (Adaptation of Theorem I.1 in [38]) Let ε > 0 be small enough such that b+ε < 1. There 
is an equivalent norm ‖·‖h satisfying ‖·‖ ≤ ‖·‖h ≤ α ‖·‖ and such that ‖Lx‖h ≤ (b + ε/2) ‖x‖h

(see [38]). The differentiability of F implies that there is a neighborhood Uh = {x ∈ X ; ‖x‖h ≤
R} of 0 such that for x ∈ Uh:

‖F(x)‖h ≤ ‖Lx‖h + ε/2‖x‖h ≤ (b + ε)‖x‖h < ‖x‖h .

Hence, F leaves Uh invariant. It follows that ‖F(x)n‖ ≤ C(b + ε)n ‖x‖ for some C ≥ 1. We now 
define U = {x ∈ X ; ‖x‖ ≤ R/α} ⊂ Uh. This set is invariant by F because α ≥ 1. This completes 
the proof of the theorem.

Appendix B. An equality for computing the spectral projector

Lemma B.1. We have the following identity

∀μ ∈C, ∀φ ∈ X , a(R(μ,A0)φ) = −μI (R(μ,A0)φ) + I (φ).

Proof. We start from a∞a(R(μ, A0)φ) = ∫∞
0 dy eμy/a∞ φ(y)

g∞(y)

∫∞
y

dx f (x)e−μx/a∞g∞(x) and 
use

∞∫
dx f (x)e−μx/a∞g∞(x) = −a∞

∞∫
dx e−μx/a∞g′∞(x)
y y
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= a∞g∞(y)e−μy/a∞ − μ

∞∫
y

dx g∞(x)e−μx/a∞

which gives a∞a(R(μ, A0)φ) = a∞I (φ) − a∞I (R(μ, A0)φ) as claimed.

Appendix C. Continuity of Mf

This section is dedicated to the proof of the continuity of (Mf )n : φ → f nφ from XA0
n into 

X .

Lemma C.1. Assume that Hypothesis 1 is satisfied. For n ∈ {1, 2}, the linear operator (Mf )n :
φ → f nφ is continuous from XA0

n into X .

Proof. From (9) in the proof of Proposition 3.1, we find Mf ∈ L(XA0
1 ,X ). The case n = 2 is 

similar as we now show. Take ψ = R(0, A0)
2φ, and write R = R(0, A0) for simplicity

a∞‖f 2ψ‖X ≤
∫
R2+

dxdy 1(y ≤ x)f 2(x)
g∞(x)

g∞(y)
|Rφ(y)| =

∞∫
0

dy|Rφ(y)|
∞∫

y

f 2(x)
g∞(x)

g∞(y)
dx

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0 dy|Rφ(y)| ∫∞
y

f 2(x)
g∞(x)
g∞(y)

dx
(C.1)
� ‖Rφ‖X

+ ∫∞
1 dy|Rφ(y)| ∫∞

y
f 2(x)

g∞(x)
g∞(y)

(C.2)
� (‖f Rφ‖X + ‖Rφ‖X )

For the first inequality, we used

1∫
0

dy|Rφ(y)|
∞∫

y

dxf 2(x)
g∞(x)

g∞(y)
≤ 1

g∞(1)

1∫
0

dy|Rφ(y)|
∞∫

0

f 2(x)g∞(x)dx

︸ ︷︷ ︸
<∞

� ‖Rφ‖X . (C.1)

For the second inequality, we used that ∀y ≥ 1:

∞∫
y

f 2(x)
g∞(x)

g∞(y)
dx =

⎡⎣−a∞f (x) exp

⎛⎝− 1

a∞

x∫
y

f

⎞⎠⎤⎦∞

y

+ a∞
∞∫

y

f ′(x) exp

⎛⎝− 1

a∞

x∫
y

f

⎞⎠
Assumption 1≤ a∞f (y) + a∞c

∞∫
y

f (x) exp

⎛⎝− 1

a∞

x∫
y

f

⎞⎠� f (y) + 1. (C.2)

Hence, we find that 
∥∥f 2R2φ

∥∥
X � (‖Rφ‖X + ‖f Rφ‖X ) � ‖Rφ‖X where the last inequality 

comes from the continuity of Mf (case n = 1). It follows that M2 ∈ L(XA0,X ).
f 2
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Appendix D. Sobolev tower: proof of Lemma 3.1

Proof. We prove each item separately.

Proof of item 1. Let us show that XA
n = XA0

n
2 where we recall that XA

n

def= (D(An), ‖ · ‖n,A) is 
endowed with ‖ · ‖n,A = ‖(μ − A)n · ‖X for μ ∈ ρ(A), i.e. μ > 0.

For n = 1, we have D(A) = D(A0). As for the norms, ∀φ ∈ XA
1 and μ ∈ ρ(A) one finds

‖φ‖1,A
def= ‖(μ − A)φ‖X = ‖(Id − BR(μ,A0))(μ − A0)φ‖X

≤ ‖Id − BR(μ,A0)‖L(X )‖(μ − A0)φ‖X � ‖φ‖1,A0

where the fact that BR(μ, A0) ∈ L(X ) was proved in Proposition 3.1. The other inequality reads:

‖φ‖1,A0

def= ‖(μ − A0)φ‖X = ‖(μ − A + B)φ‖X = ‖(Id + BR(μ,A))(μ − A)φ‖X
≤ ‖Id + BR(μ,A)‖L(X )‖(μ − A)φ‖X � ‖φ‖1,A

where BR(μ, A) ∈ L(X ) thanks to (11) and (10).
For n = 2:

D(A2) = {φ ∈ D(A), Aφ ∈ D(A)}={φ ∈ D(A0), Aφ ∈ D(A0)}
= {φ ∈ D(A0), (A0 + B)φ ∈ D(A0)}

Bφ∈D(A0)= {φ ∈ D(A0), A0φ ∈ D(A0)} = D(A2
0).

Concerning the norms, ∀φ ∈ XA
2 and μ ∈ ρ(A):

‖φ‖2,A
def= ‖(μ − A)φ‖1,A

“n=1”≤ C1‖(μ − A)φ‖1,A0 = C1‖(Id − BR(μ,A0))(μ − A0)φ‖1,A0

≤ C1‖Id − BR(μ,A0)‖L(XA0
1 )

‖(μ − A0)φ‖1,A0 � ‖φ‖2,A0 .

The last inequality comes from B ∈ L(XA0
1 ) in Proposition 3.1. For φ ∈ XA

1 and μ ∈ ρ(A), 
we find |a(R(μ, A)φ)| � ‖φ‖X � ‖φ‖XA

1
using (11) and (10). Hence BR(μ, A) ∈ L(XA

1 ) since 

g′∞ ∈ D(A) = D(A0). Using this, we find:

‖φ‖2,A0

def= ‖(μ − A0)φ‖1,A0

“n=1”≤ C1‖(μ − A + B)φ‖1,A = C1‖(Id + BR(μ,A))(μ − A)φ‖1,A

≤ C1‖Id + BR(μ,A)‖L(XA
1 )‖(μ − A)φ‖1,A � ‖φ‖2,A.

We conclude that XA
n = XA0

n for n ∈ {1, 2} with equivalent norms.

2 Meaning that D(An) = D(An) and ‖ · ‖n,A ∼ ‖ · ‖n,A .
0 0
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In this proof, we endowed XA0
n with the norm ‖(μ − A0)

n · ‖ in order to show equivalence 
between the XA

n -norm and the XA0
n -norm. However since A0 is invertible the norms ‖(μ − A0) ·

‖X and of ‖A0 · ‖X are equivalent which means that XA
n = (D(An

0), ‖An
0 · ‖).

Proof of item 2. Direct consequence of item 1 as A|XA
n

generates a C0–semigroup (see [31]).

Proof of item 3. See Proposition 3.2 for the expression of XA0
1 . The fact that there exists a constant 

C > 0 such that ‖ · ‖1,A0 ≤ C‖ · ‖1 is straightforward. The reverse inequality is a consequence of 

the continuity of Mf and D = −A0+Mf

a∞ = ∂x from XA0
1 to X (see Lemma C.1).

Proof of item 4. We first identify D(A2
0). As in the proof of Proposition 3.2, we start from ψ =

R(μ, A0)φ with φ ∈ D(A0) and μ ≥ 0. We have that R(μ, A0)D(A0) = D(A2
0) and we deduce 

firstly that ψ(0) = ψ ′(0) = 0. Moreover the proof of Lemma C.1 shows that a∞‖f 2ψ‖X ≤
C ‖φ‖1,A0

which implies that f 2ψ ∈X . From the definition of ψ , we have that

a∞ψ ′ = −f ψ + φ − μψ

which gives fψ ′ ∈ X . Hence, from Assumption 1, we have (f ψ)′ ∈ X and ψ ′′ ∈ X . To sum up 
we have shown that:

D(A2
0) ⊂ {φ ∈ X / φ′′ ∈X , f φ′ ∈X , f 2φ ∈X , φ(0) = φ′(0) = 0}.

Reciprocally, let ψ ∈ {φ ∈ X / φ′′ ∈ X , f φ′ ∈ X , f 2φ ∈ X , φ(0) = φ′(0) = 0} and define 
φ = a∞ψ ′ + f ψ + μψ : we will show that φ ∈ D(A0) noting that ψ = R(μ, A0)φ by injectivity 
of μId − A0. We first note that φ(0) = 0.

• φ ∈X because ψ ∈ X and ψ ′ ∈X and

‖f ψ‖X ≤ ‖f 2ψ‖X +
∫

{f ≤1}
|ψ | ≤

∥∥∥f 2ψ

∥∥∥
X

+ ‖ψ‖X < ∞, (D.1)

• f φ ∈ X because f ψ ′ ∈X , f 2ψ ∈X and f ψ ∈ X thanks to (D.1),
• φ′ ∈X because ψ ′′ ∈ X , ψ ′ ∈X (thanks to f ψ ′ ∈ X ), and (f ψ)′ = f ′ψ + f ψ ′ is such that 

f ψ ′ ∈ X and

‖f ′ψ‖X
Assumption 1≤

∫
{x≤1}

f ′|ψ | + c‖f ψ‖X � ‖f ψ‖X + ‖ψ‖X < ∞. (D.2)

Hence φ ∈ D(A0) which gives ψ = R(μ, A0)φ ∈ D(A2
0) and it follows that D(A2

0) = {φ ∈
X , φ′′ ∈ X , f φ′ ∈ X , f 2φ ∈ X , φ(0) = 0, φ′(0) = 0}. As for the norms, for all φ ∈XA0
2
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‖A2
0φ‖X �

(
‖φ′′‖X + ‖f φ′‖X + ‖f ′φ‖X + ‖f 2φ‖X

)
(D.2)
�
(
‖φ′′‖X + ‖f φ‖X + ‖f φ′‖X + ‖f 2φ‖X + ‖φ‖X

)
(D.1)
�
(
‖φ′′‖X + ‖φ‖X + ‖f φ′‖X + ‖f 2φ‖X

)
= ‖φ‖2.

For the reverse inequality ‖φ‖2 � ‖φ‖2,A0 , only the terms ‖f φ′‖X and ‖φ′′‖X require additional 
attention. From the continuity of Mf A−1

0 ∈ L(X ) (see (9)), we have

∥∥∥D2A−2
0 φ

∥∥∥
X

= 1

a2∞

∥∥∥(Id + Mf A−1
0 )2φ

∥∥∥
X
� ‖φ‖X

which gives 
∥∥φ′′∥∥

X � ‖φ‖2,A0
. We also have

‖f φ′‖X = 1

a∞
∥∥Mf (A0 + Mf )φ

∥∥
X ≤ 1

a∞
∥∥Mf A0φ

∥∥
X + 1

a∞

∥∥∥M2
f φ

∥∥∥
X

Lemma C.1
� ‖φ‖2,A0

which concludes the proof.

Proof of item 5. The proof is essentially the same as the one of the previous items. The domain 
of D(C2

α) is the same as D(A2
0). Up to scaling f , the two previous items show that ‖·‖1,α (resp. 

‖·‖2,α) is equivalent to ‖·‖1 (resp. ‖·‖2) hence the different norms ‖·‖1,α for α > 0 are equivalent, 
the same is true for ‖·‖2,α .

Appendix E. Lemmas for the continuity of Ua and Va

Lemma E.1. If Assumption 1 is satisfied, then for all C ≥ 0 and a > 0, there are two constants 
t0 > 0 and C′ > 0 such that for all φ ∈ X

∀u ≥ t0, eC·Ua(u)|φ| ≤ e−C′u2 |φ(· − u)|H(· − u) a.s., (E.1a)∥∥∥∥∥∥eC·
∞∫

t0

Ua(u)|φ|
∥∥∥∥∥∥
X

≤ C′‖φ‖X . (E.1b)

Proof. Let us first bound the following function:

∀x ≥ 0,∀u ≥ 0, |eCxUa(u)φ|(x) = e
Cx− 1

a

∫ x
x−u f |φ|(x − u)H(x − u).

As the above quantity is zero for x < u, we focus on the case x ≥ u. For each u ≥ 0, we 

introduce the function ∀x ≥ u, gu(x) 
def= Cx − 1

a

∫ x

x−u
f . This function is differentiable and 

g′
u(u) = C − f (u)

a
because f (0) 

Hyp. 1= 0. We chose t0 > 1 so that g′
t0
(t0) < 0: this is possible as 

f is increasing unbounded. As f is convex, we find that x → g′
u(x) is non-increasing so that 

∀x ≥ u ≥ t0, g′ (x) ≤ g′ (u) < 0. It follows that ∀x ≥ u ≥ t0, gu(x) ≤ gu(u). As u ≥ t0 > 1, one 
u u
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finds gu(u) 
Assumption 1 (i)≤ Cu − 1

a

∫ 1
0 f − c

2a
(u2 − 1) ≤ −C′u2 for u (or t0) large enough and for 

a new constant C′ > 0. Hence, we found that there is a constant C′ > 0 such that

∃t0 > 0,∀x ≥ u ≥ t0, gu(x) ≤ −C′u2.

This implies that eC·Ua(u)|φ| ≤ e−C′u2 |φ(. − u)|H(. − u) for u ≥ t0 and gives the first in-
equality of the lemma. It also gives the second inequality using Fubini’s theorem.

Lemma E.2. Grant Assumption 1 for (E.2a) or 2 for (E.2b). There is a constant C > 0 such that 
∀φ ∈XA

2 , ∀a ∈ C0(R+) and ∀t, u ≥ 0:

‖Ua(t + u, t)φ‖2,A ≤ C‖φ‖2,A (E.2a)

‖Va(t + u, t)φ‖2,A ≤ C(‖ρ(a)‖∞ + ‖φ‖2,A). (E.2b)

In particular, these operators leave XA
2 invariant.

Proof. We start with the simpler case of Ua . We first show that Ua(t, s)φ belongs to W 2,1
loc (R+)

if φ ∈ XA
2 . For φ ∈ XA

2 and t ≥ s ≥ 0, we write u(t, ·) = Ua(t, s)φ. We note that u(t, x) =
q(t, s, x)(Tr (t − s)φ)(x) where (Tr (t))t≥0 is the C0-semigroup of right translations and x →
q(t, s, x) ∈ C2(R+) is a bounded function with bounded derivatives. It is known that Tr(t) leaves 
{ϕ ∈ W 2,1(R+), ϕ(0) = ϕ′(0) = 0} invariant.3 It follows that u(t, ·) ∈ W

2,1
loc (R+). We can thus 

take the derivatives of Ua(t + u, t)ϕ in order to compute norms.
Let us now bound almost everywhere Ua(t + u, t)φ, f 2Ua(t + u, t)φ, f (Ua(t + u, t)φ)′ and 

(Ua(t + u, t)φ)′′ in order to show that ‖Ua(t + u, t)φ‖2 � ‖φ‖2. In particular, this will show 
that these functions are integrable. We first note from Remark 1 that there is C > 0 such that 
f (x) ≤ C exp(Cx) for all x ≥ 0. Secondly, using that ArTr (u)φ = Tr(u)Arφ for u ≥ 0 where 
Ar = ∂x , we can simplify the computation of the derivatives that appear below.

• Let k ∈ {0, 2}, from Lemma E.1, there are constants C > 0 and t0 > 0 such that

f k|Ua(t + u, t)φ| ≤
{

f kTr (u)|φ|, if 0 ≤ u ≤ t0

e−Cu2
Tr (u)|φ| otherwise

which gives for some new constant C independent of a

∥∥∥f kUa(t + u, t)φ

∥∥∥
X

≤
{

C(‖φ‖X + ∥∥f 2φ
∥∥
X ), if 0 ≤ u ≤ t0

C ‖φ‖X otherwise.

Indeed, by Remark 1,

∥∥∥f 2Tr (u)|φ|
∥∥∥
X

=
∞∫

0

f 2(x +u)|φ(x)|dx ≤
∞∫

0

f 2(x + t0)|φ(x)|dx ≤ C(‖φ‖X +
∥∥∥f 2φ

∥∥∥
X

).

3 It is the domain of the square of its infinitesimal generator.
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It follows that there is C > 0 such that for all t, u ≥ 0, 
∥∥f kUa(t + u, t)φ

∥∥
X ≤ C ‖φ‖2.

• The derivative (Ua(t + u, t)φ)′ is bounded by

|(Ua(t + u, t)φ)′|� X′
uUā(u)|φ| + Uā(u)|φ′| ≤ C

[
(u + Xu)Uā(u)|φ| + Uā(u)|φ′|]

for C ≥ 1 where Xu(x) 
def= ∫ u

0 f (v + x − u)dv and X′
u(x) = ∫ u

0 f ′(v + x − u)dv
Assumption 1≤

C(u + Xu(x)). Using the boundedness of x → xe−x , we find that

|(Ua(t +u, t)φ)′| ≤ C
[
Tr (u)|φ| + uUā(u)|φ| + Uā(u)|φ′|]� Tr (u)(|φ|+|φ′|)+uUā (u)|φ|

(E.3)
The only remaining term to study is:

uf Uā(u)|φ| Lemma E.1≤
{

Cf Tr (u)|φ|, if 0 ≤ u ≤ t0

CTr (u)|φ| otherwise

which implies that there is a constant C > 0 such that for all u, t ≥ 0∥∥f (Ua(t + u, t)φ)′
∥∥
X ≤ C ‖φ‖2 .

Similarly, using that f ′′ Assumption 1≤ C(1 + f ) to get X′′
u ≤ C(u + Xu) for some C, we find 

∀x, u ≥ 0

|(Ua(t + u, t)φ)′′|� ((X′′
u + X′2

u )Uā(u)|φ| + 2X′
uUā(u)|φ′| + Uā(u)|φ′′|)

≤ C
[
(u + u2 + Xu + 2uXu + X2

u)Uā(u)|φ| + 2(u + Xu)Uā(u)|φ′| + Uā(u)|φ′′|
]
. (E.4)

As above, using Lemma E.1 and the boundedness of x → x2e−x , there is a constant C > 0
such that for all u, t ≥ 0 ∥∥(Ua(t + u, t)φ)′′

∥∥
X ≤ C ‖φ‖2 .

Putting all of this together, this shows that there is C > 0 independent of a such that for all 
u, t ≥ 0:

∀φ ∈ XA
2 , ‖Ua(t + u, t)φ‖2 ≤ C ‖φ‖2 .

Using Lemma 3.1, we then get ‖Ua(t + u, t)φ‖2,A ≤ C ‖φ‖2,A. Also, we found that XA
2 is in-

variant by Ua(t, s) for all t ≥ s ≥ 0.
We now look at Va by taking advantage of the above computations. For k ∈ {0, 2}:

∥∥∥f kVa(t + u, t)φ

∥∥∥
X
� ‖φ‖2,A + ‖ρ(a)‖∞

a∞(a∞ − η)
‖f k

t+u∫
Uā(t + u − r)(fg∞)dr‖X .
t
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The integral term is bounded by ‖f k
∫∞

0 Uā(r)(fg∞)dr‖X Lemma E.1
< ∞ leading to:∥∥∥f kVa(t + u, t)φ

∥∥∥
X
� (‖ρ(a)‖∞ + ‖φ‖2,A).

We now look at the case of f (Va(t +u, t)φ)′, only the integral term requires additional analysis. 
We have

|(Ua(t + u, r)(fg∞))′|
(E.3)
� Tr (t + u − r)(|fg∞| + |(fg∞)′|) + (t + u − r)Uā(t + u − r)|fg∞|

≤ ‖fg∞‖∞ + ∥∥(fg∞)′
∥∥∞ + (t + u − r)‖fg∞‖∞ .

We can thus apply Lebesgue’s dominated convergence to differentiate under the integral to get:

‖f ∂x

t+u∫
t

Ua(t + u, r)(fg∞))‖X = ‖
t+u∫
t

f ∂xUa(t + u, r)(fg∞))‖X

�

∥∥∥∥∥∥
u∫

0

f XrUā(r)(fg∞)dr

∥∥∥∥∥∥
X

+
∥∥∥∥∥∥

u∫
0

f Uā(r)|(fg∞)′|dr

∥∥∥∥∥∥
X

+
∥∥∥∥∥∥

u∫
0

rf Uā(r)(fg∞)dr

∥∥∥∥∥∥
X

=u O(1).

Indeed, the only non-trivial inequality in the above expression comes from the first integral term, 
the other where dealt with above. From Assumption 1, we have f (x)Xu(x) ≤ Ce2Cx for some 
constant C > 0 and the rest follows from Lemma E.1. Similarly

‖∂2
x

t+u∫
t

Ua(t + u, r)(fg∞))‖X = ‖
t+u∫
t

∂2
x Ua(t + u, r)(fg∞))‖X

(E.4)
�

∥∥∥∥∥∥
u∫

0

Uā(r)|(fg∞)′′|dr

∥∥∥∥∥∥
X

+
∥∥∥∥∥∥

u∫
0

(r + Xr)Uā(r)|(fg∞)′|dr

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥
u∫

0

(r + r2 + Xr + 2rXr + X2
r )Uā(r)(fg∞)dr

∥∥∥∥∥∥
X

=u O(1).

This shows that there is a constant C > 0 independent of a such that for all t, u ≥ 0, ∀φ ∈XA0
2∥∥f (Va(t + u, t)φ)′

∥∥
X ,

∥∥(Va(t + u, t)φ)′′
∥∥
X ≤ C(‖ρ(a)‖∞ + ‖φ‖2)

or

‖Va(t + u, t)φ‖2 ≤ C
[‖ρ(a)‖∞ + ‖φ‖2

]
.

We conclude as for the case of Ua .
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Lemma E.3. Let us consider v(h)(x) 
def= exp

(
− ∫ h

0 f (x + z)b(z)dz
)

φ(x) for 0 ≤ h ≤ 1, x ≥ 0

and φ ∈ XA
2 . We assume that b is continuous on R+, bounded such that ∀z ≥ 0, b(z) ≥ b > 0. 

Then, v is differentiable at 0 in X .

Proof. Using Taylor formula with integral reminder, we find pointwise in x that for h ≥ 0

v(h) = v(0) + hv̇(0) + h

1∫
0

(v̇(sh) − v̇(0)) ds

We write the last term hR(h). To prove the lemma, we have to show that ‖R(h)‖X tends to 0 as 
h → 0. We find:

‖R(h)‖X ≤
1∫

0

∞∫
0

dsdx |f (x)b(0)φ(x) − f (x + sh)b(sh)v(sh)(x)|.

The integrand is bounded by 2‖b‖∞f (x + 1)|φ(x)| Hyp. 1≤ 2‖b‖∞C(f (x) + 1)|φ(x)| which is 
integrable as φ ∈ XA

2 . We conclude the proof using Lebesgue’s dominated convergence theorem.

Proposition E.1. Grant Assumption 1. For all φ ∈ XA
2 , ∀t ≥ s ≥ 0, the mapping a → Ua(t, s)φ

is C1 from C0([t, s]) into XA
2 and

d [Ua(t, s)φ] · b =
⎛⎝ t∫

s

f (v + . − t)b(v)

(a∞ + ρ(a(v))2 ρ′(a(v))dv

⎞⎠Ua(t, s)φ.

Additionally, grant Assumption 2, then the mapping a → Va(t, s)φ is C1 from C0([t, s]) into 
XA

2 .

Proof. We consider φ ∈ XA
2 and a → Ua(t, s)φ, the case of Va(t, s) is similar. Recall from (14)

that we write ̃a(t) 
def= a∞ + ρ(a(t)). The mapping a → ã being C1 from C0([t, s]) into itself, 

it is enough to prove the differentiability of F : a → exp
(
− ∫ t

s
f (v + · − t)a(v)dv

)
Tr (t − s)φ

from C0([t, s]) into XA
2 at any point a such that a

def= mina > 0. We thus consider such a point 

a ∈ C0([s, t]). It is convenient to define the following functions �t,s
def= F(a+b) −F(a) −dF(a) ·

b = Et,sTr (t − s)φ where

dF(a) · b def= e−Xt,s (a)Xt,s(b)Tr (t − s)φ, Et,s
def= e−Xt,s (a+b) − e−Xt,s (a) + e−Xt,s (a)Xt,s(b)

and Xt,s(a) 
def= x → ∫ t

s
f (v + x − t)a(v)dv. Using the Taylor formula with integral reminder, 

one finds ∀b ∈ BC0([s,t])(0, δ) where δ < a/2 (see below)
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Et,s = e−Xt,s (a+b)Xt,s(b)2

1∫
0

euXt,s (b)udu.

By Assumption 1, there is a constant C > 0 such that for all u ≥ 0, X0,−u(1)′, X0,−u(1)′′ ≤
C(u + X0,−u(1)). Hence, using the monotony properties of f , we find that for k ∈ {0, 1, 2}

|E (k)
t,s | ≤ Pk(X0,s−t (1), t − s, δ, a)e−(a−2δ)X0,s−t (1)‖b‖2

C0([s,t]), a.s. (E.5)

for polynomials Pk(·, t − s, δ, a) ∈ Rk+2[X] with positive coefficients. Differentiating �t,s , we 
find

(�t,s)
′ = E ′

t,sTr (t − s)φ + Et,sTr (t − s)φ′

(�t,s)
′′ = E ′′

t,sTr (t − s)φ + 2E ′
t,sTr (t − s)φ′ + Et,sTr (t − s)φ′′.

Let us have a look at 
∥∥f (�t,s)

′∥∥
X for example. We find

∥∥f (�t,s)
′∥∥
X ≤

∥∥∥∥f P1(X0,s−t (1), t − s, δ, a)U 1
a−2δ

(t − s)|φ|
∥∥∥∥
X

‖b‖2
C0([s,t])+∥∥∥∥f P0(X0,s−t (1), t − s, δ, a)U 1

a−2δ
(t − s)|φ′|

∥∥∥∥
X

‖b‖2
C0([s,t]).

From X0,−u(1) 
Assump. 1

� eCx , we use Lemma E.2 in the case δ < a/2 to show that 
∥∥f (�t,s)

′∥∥
X �

‖φ‖2 ‖b‖2
C0([s,t]). The other cases are similar, it yields:

∀φ ∈XA
2 ,
∥∥�t,s(a)

∥∥
2 � ‖φ‖2 ‖b‖2

C0([s,t]).

The fact that dF(a) is a continuous linear mapping is straightforward and thus we obtain that F
is differentiable at a. This shows that a → Ua(t, s)φ is C1 from C0([s, t]) into XA

2 .
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