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DETAILS ABOUT THE LECTURE

Website of the lectures: http://romainveltz.pythonanywhere.com/teaching/

Go to https://sympa.inria.fr/sympa/info/cours_mmn_paris_2023_24 to
subscribe to the mailing list

Research axis:

• Emphasis on biology: modeling the synapse, pain.
• Mathematical modeling: mean-field, interplay between noise and
dynamics, space dependent neural networks (waves,...)

• Dynamics of spiking neurons with additional details: homeoplasticity,
dendritic compartment

• Effect of plasticity on network dynamics
• Bio-inspired Machine Learning
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OVERALL GOAL OF LECTURES ON (DETERMINISTIC) METHODS

To provide tools for the study of dynamical behaviors of models in
neuroscience.

What is the working regime of a given phenomenon?

Emphasis on spiking neurons.

• Reduction of these models (locally) to simple low dimensional ODE
• Reduction of these models (locally) based on a difference of time
scales?

• Understand the algorithms / maths behind the numerical tools to
investigate these models.

• To be able to build models that match a behavior.
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SPIKING BEHAVIORS

(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms
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EXAMPLE OF NETWORK DYNAMICS [ROXIN-ETAL:06]

Networks with Delays 5
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Fig. 2. Various firing patterns in the conductance-based network. N = 2000 neurons for each
population. Typical voltage traces of single-cell activity are shown to the right of each raster.
Left column (top to bottom): Stationary uniform state, steady bump state and standing wave.
Parameters: KE,0 = 400, KI,0 = 400, KE,1 = (0, 400, 0), KI,1 = (0, 0, 400) , gE = 1.9 µS/cm2,
gI = 5.4 µS/cm2, νext = (500, 500, 5000) Hz and gext = (1.9, 1.9, 0.19) µS/cm2. δ = 0 ms. Right
column (top to bottom): Homogeneous oscillations, oscillating bump state and standing waves.
Parameters: KE,0 = (0, 400, 0), KI,0 = (1000, 400, 1000), KE,0 = (0, 200, 0), KI,1 = (0, 0, 400),
gE = (0, 19, 0) µS/cm2, gI = (19, 54, 19) µS/cm2, νext = (15000, 2000, 15000) Hz and gext =
1.9 µS/cm2. δ = 0 ms.

the spatio-temporal structure of the network activity to the strength and the spatial
dependence of the neuronal interactions.

§3. Dynamics of a rate model with delay

As in the conductance-based model considered above, the rate model consists of
two population of neurons, excitatory and inhibitory. The state of a neuron belonging
to population α = E, I, located a position θ in the ring, is described by a continuous
scalar variable, mα(θ, t), which obeys the dynamical equation:

τ
dmα(θ, t)

dt
= −mα(θ, t)+Φ

(
Iext(θ, t)+

∑

β=E,I

∫
dθJαβ(|θ−θ′|)mβ(θ′, t−D)

)
. (3.1)

where Jα,β(|θ−θ′|) represents the interaction from population β to population α, the
external input to neuron at θ in both populations is Iext(θ, t), and the function Φ(I)
is the input-output transfer function of the neurons in both populations . The delay
D neither depends on the distance between the pre- and the postsynaptic neurons
nor on the nature (E, I) of these neurons.

In order to further simplify the model, we will assume that Jαβ depends only
on β. This is analogous to the relations Eq. 2.3 and Eq. 2.4 for the network model.
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ACTIVITY PATTERNS IN VISUAL CORTEX [BRESSLOFF-ETAL:03]

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Geometric visual hallucinations

G. Faye / O. Faugeras 30 / 31
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MEAN-FIELD LIMITS [LUCON-ETAL:18]

dXt = (F (Xt)− K (Xt − E [Xt])) dt+
√
2σdBt, t ⩾ 0

Vt = V0 +
∫ t

0
b (Vu)du+ J

∫ t

0
Ef (Vu)du+ jumps
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OUTLINE

http://romainveltz.pythonanywhere.com/teaching/

A few notions concerning the biology of the brain

Towards the Hodgkin-Huxley model

Simplified models of spiking neuron

Introduction to dynamical systems

Invariant sets

Stable/Unstable manifolds
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A FEW NOTIONS CONCERNING THE BIOLOGY
OF THE BRAIN



DIFFERENT SCALES

∼ 1011 neurons, connected by ∼ 1015 synapses. Glial cell number more
controversial

Figure 1: Picture by N.Brunel
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A CARTOON NEURON
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DENDRITIC TREE

[ ]pdfmark=/ANN,Subtype=/Movie,Movie=« /F
(mmc12.mp4) »,Annotations=« »,T=(mmdefaultlabel1), Border=0 0 0

Figure 2: Left: Photomicrographs of Golgi-stained mouse cortical neurons from slices.
(a) Scale = 50 µm. (b) Scale = 10 µm. (c) Scale = 5 µm. Right: Kasthuri et al. 2015 Video

12



NEUROPIL

Figure 3: axons (Ax) synaptic contacts (Sy) dendritic shafts (D) spines (S) astrocytes (Ap). Fine
Structure of the Nervous System: Neurons and Their Supporting Cells
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TOWARDS THE HODGKIN-HUXLEY MODEL



OUTLINE

A few notions concerning the biology of the brain

Towards the Hodgkin-Huxley model

Simplified models of spiking neuron

Introduction to dynamical systems

Invariant sets

Stable/Unstable manifolds
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TOWARDS THE HODGKIN-HUXLEY MODEL

(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms
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THE BRAIN: AN ELECTRO-CHEMICAL MACHINE

The channels are ion selective. More K+ inside, more Na+outside

17



THE BRAIN: AN ELECTRO-CHEMICAL MACHINE
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PASSIVE ION CHANNEL

⇒ Interplay between diffusion and E⃗
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THE NERNST EQUATION- REVERSAL / RESTING MEMBRANE POTENTIAL

⇒ Case of a single ion specie

We start with the Nernst-Planck equation which describes the ionic flux
accross the membrane

J = Jdiff + Jdrift = −D∇[X]− µz[X]∇V

• z ion valence

• Einstein: µ = DF
RT

Nernst equation:
• flux across a 1d membrane I = −D

(
∇[X] + zF

RT [X]∇V
)

• I = 0 gives:
EX ≡ Vin − Vout = −RTzF ln

[X]in
[X]out

Improved by Goldman-Hodgkin-Katz equation which takes into account all
ions
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EQUIVALENT MODEL

Ix = gX(V) · (V− EX)

• More ion types of the Nernst-Planck equation→
Goldman–Hodgkin–Katz current

• Linearize GHK current

CdVdt = −IL − INa − IK

21



ACTIVE CHANNELS

Properties
- affected by membrane potential V
- affected by intracellular molecules/ions (Calcium)
- affected by extracellular molecules (Glu, GABA...)
- channels can be open / closed
- channels can be activated / inactivated

• Patch clamp: Fix V by adjusting I: gives I− V curve

• Ion substitution: select some IX (Hodgkin-Huxley 1952)
• Toxin to block some channel, to select some IX

• tetrodotoxin (fugu) for Na+ channel
• tetraethylammonium for K+ channel

IX = ḡXmahb(V− EX)
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equation (i.e., Fig. 14.7) lent support to Hodgkin and
Huxley’s proposition that changes in ionic permeability
depended on the movement of some component of the
membrane that behaved as though it were a charged
particle. In addition to providing a possible mechanism
for the voltage dependency (i.e., the nonlinear I-V
relations in Fig. 14.2) of membrane conductance, the
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FIGURE 14.7 Voltage dependence of ionic conductances. The
maximum gNa and gK were measured at several different membrane
potentials under voltage clamp. The filled circles represent data from
an experiment by Hodgkin and Huxley (axon 17) and the solid lines
represent best-fit curves of the form given in Eq. 14.12. (The calcula-
tions assumed w5 0.) The most striking feature of the conductances
is the extreme steepness of the relation between ionic conductance
and the membrane potential. A depolarization of only B4 mV can
increase gNa by e-fold (e! 2.72), while the corresponding figure for
gK is B5 mV. Adapted from Hodgkin and Huxley (1952a).
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FIGURE 14.6 Schematic representation of the gate model that
was proposed by Hodgkin and Huxley (1952d). The gate model
assumes that many individual ion channels, each with a small ionic
conductance, determine the behavior of the macroscopic membrane
conductance. The ion channels have “gates” that are controlled by
voltage-sensitive gating charges or particles. If the gating particles
are in the permissive state, then the gates are open and ions can pass

!

through the channel. Otherwise, the gates are closed and passage of
ions through the channel is blocked. In this example, each gate is
regulated by a single gating particle and the gating particles are
assumed to be positively charged. Other scenarios are possible, how-
ever. A: K1 channels are regulated by a single activation gate, which
is embodied in the HH model as n (see Eq. 14.33). At the resting
potential (as indicated by the minus signs, “2 ”, on the intracellular
surface and the plus signs, “1 ”, on the extracellular surface), the
gating particles are primarily distributed at locations within the
membrane that are nonpermissive, i.e., the gate is closed (A1). As the
membrane potential is depolarized (A2; note translocation of “2 ”
and “1 ” signs), the probability increases that a gating particle will
be located in a position that is permissive, i.e., the gate is open (i.e.,
activation). Potassium ions (K1) can flow through the open channel.
B: Na1 channels are regulated by two gates: an activation gate and
inactivation gate. These two gates are embodied in the HH model as
m and h, respectively (see Eq. 14.25). Unlike the activation gate, the
inactivation gate is normally open at the resting potential (B1). Upon
depolarization (B2), the probability increases that the activation gate
will open, whereas the probability that the inactivation gate will
remain open decreases. While both gates are open, Na1 passes
through the channel. As the depolarization continues, however (B3),
the inactivation gate closes and ions can no longer pass through the
channel (i.e., inactivation).
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gating particles are primarily distributed at locations within the
membrane that are nonpermissive, i.e., the gate is closed (A1). As the
membrane potential is depolarized (A2; note translocation of “2 ”
and “1 ” signs), the probability increases that a gating particle will
be located in a position that is permissive, i.e., the gate is open (i.e.,
activation). Potassium ions (K1) can flow through the open channel.
B: Na1 channels are regulated by two gates: an activation gate and
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m and h, respectively (see Eq. 14.25). Unlike the activation gate, the
inactivation gate is normally open at the resting potential (B1). Upon
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ION CHANNELS ARE STOCHASTIC

Figure 4: VGCC a) L-type b) T-type, from Sterratt.
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THE POTASSIUM CURRENT gK = ḡKn4, EK ≈ −72mV

(From Sterratt)

C
αn

⇌
βn

O or dn
dt = αn(V)(1− n)− βnn

• Voltage clamp gives n∞ = αn
αn+βn

• Rising time: τn = 1
αn+βn

• αn = 0.01 V+55
1−exp(−(V+55)/10)

• βn = 0.125exp(−(V+ 65)/80)
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THE SODIUM CURRENT gNa = ḡNAm3h, ENa ≈ 55mV

We compute gK(t) with previous equation

a) Vrest → Vrest + 76mV b) Vrest → Vrest + 88mV (From Sterratt)

Introduction of the state not inactivated h independent of the state m.
It is called the inactivation gate.

• αm = 0.1 V+40
1−exp(−(V+40)/10)

• βm = 4exp(−(V+ 65)/18)

• αh = 0.07exp(−(V+ 65)/20)
• βn = 1

exp(−(V+35)/10)+1 26



SUMMARY 1/2

Their work earned them a Nobel prize in 1963.

CV̇ = I− ḡKn4(V− EK)− ḡNam3h(V− ENa)− ḡL(V− EL)
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SUMMARY 2/2

Their work earned them a Nobel prize in 1963.

• Model of membrane patch. Can be used for dendrites, axons...
• Derived for the squid at T ∼ 10oC. Extended to mammals at 36oC by
[Traub-Mile:91]

• Detailed compartmental model NEURON simulator, HBP project.
• Ions channels modeled by Markov Chains, PSICS simulator
• Finite size effects
• Ion channel regulation (E. Marder, T. O’Leary...)

28



ACTION POTENTIAL,ENa ≈ 55mV,EK ≈ −72mV
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“Relatively” straightforward, but see next...
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SIMPLIFIED MODELS OF SPIKING NEURON



OUTLINE

A few notions concerning the biology of the brain

Towards the Hodgkin-Huxley model

Simplified models of spiking neuron

Introduction to dynamical systems

Invariant sets

Stable/Unstable manifolds
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A VARIETY OF MODELS

On the blackboard...
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MORRIS-LECAR MODEL

Simple 2d excitable model with two channels.

Equations: CV̇ = I− gL(V− VL)− gCam∞(V) · (V− VCa)− gKn · (V− VK)
ṅ = λ(V)(n∞(V)− n)

where

m∞(V) = 1
2

(
1+ tanh

[
V−V1
V2

])
,n∞(V) = 1

2

(
1+ tanh

[
V−V3
V4

])
,

λ(V) = λ̄ cosh
[
V−V3
2V4

]
• can generate AP
• there is a threshold for firing→ see Lecture 3.
• possible oscillatory behavior
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MORRIS-LECAR: PHASE DIAGRAMS
N
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REDUCTION OF THE HH MODEL

Observation
- τm(V) is much smaller than τh(V),τn(V)
- (n,h) almost lies on a line n = b− rh

This gives:

• m(V) ≈ m∞(V)
• a system in the variables (V,n)

It shows that the V-nullcline has a cubic shape. It gives:

CV̇ = I− ḡKn4(V− EK)−
ḡNa
r m∞(V)2(b− n)(V− ENa)− gL(V− EL)

⇒ Reduction not trivial, use of singular perturbations and slow/fast
dynamics.
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FITZHUGH-NAGUMO

Simplified model to capture the essence of the cubic nature of the
V-nullcline

Equations:  CV̇ = V(V− a)(1− V)− w+ I
ẇ = ϵ(V− γw)

• It has been used to model nerve conduction, heart...
• ϵ is small so the recovery variable is much slower than voltage
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NONLINEAR INTEGRATE AND FIRE

• Neglect the spike generation mechanism
• Previous models can be reduced to 2d
models with:

• fast membrane potential V: N-shaped
nullcline

• slow recovery variable (K activation, Na
inactivation...): sigmoid-shaped nullcline

272 Simple Models
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Figure 8.4: Phase portrait (a) and its magnification (b) of a typical neuronal model
having voltage variable V and a recovery variable u.

value vpeak, and then resetting to vreset. If, in addition, vreset >
√
|b|, then there is a

coexistence of resting and periodic spiking states, as in Fig.3.35 (bottom). The period
of the spiking state is provided in exercise 4. A two-parameter bifurcation diagram of
(8.2) is depicted in Fig.8.3.

Unlike its linear predecessor, the quadratic integrate-and-fire neuron is a genuine
integrator. It exhibits saddle-node bifurcation; it has a soft (dynamic) threshold; and
it generates spikes with latencies, as many mammalian cells do. Besides, the model
is canonical in the sense that the entire class of neuronal models near saddle-node on
invariant circle bifurcation can be transformed into this model by a piecewise con-
tinuous change of variables (see section 8.1.5 and the Ermentrout-Kopell theorem in
Hoppensteadt and Izhikevich 1997). In conclusion, the quadratic, and not the leaky,
integrate-and-fire neuron should be used in simulations of large-scale networks of inte-
grators. A generalization of this model is discussed next.

8.1.4 Simple Model of Choice

A striking similarity among many spiking models, discussed in chapter 5, is that they
can be reduced to two-dimensional systems having a fast voltage variable and a slower
“recovery” variable, which may describe activation of the K+ current or inactivation
of the Na+ current or their combination. Typically, the fast variable has an N-shaped
nullcline and the slower variable has a sigmoid-shaped nullcline. The resting state in
such models is the intersection of the nullclines near the left knee, as we illustrate
in Fig.8.4a. There, V and u denote the fast and the slow variable, respectively. In
chapter 7 we showed that many computational properties of biological neurons can be
explained by considering dynamics at the left knee.

In section 5.2.4 we derive a simple model that captures the subthreshold behavior

 CV̇ = F(V)− w+ I
ẇ = a(bV− w)

• Spike emitted at t = t∗ when V reaches a cutoff value θ or when it blows
up.

• Reset V∗ → c and w∗ → w∗ + d
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SPIKING REGIMES FROM SIMPLIFIED MODELS

(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms
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INTRODUCTION TO DYNAMICAL SYSTEMS



OUTLINE

A few notions concerning the biology of the brain

Towards the Hodgkin-Huxley model

Simplified models of spiking neuron

Introduction to dynamical systems

Invariant sets

Stable/Unstable manifolds
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Definition
A dynamical system is a triplet (T, X, ϕt) where T ⊂ R ou Z, X is the state
space and ϕt : X→ X is a family of operators such that:
- ϕ0 = Id
- ϕt+s = ϕt ◦ ϕs

• The system maps an initial state x0 to a state x(t) = ϕt(x0) at time t
• If T contains negative values, the system is said invertible
• The state ϕt(x0) may be defined only locally in time. The orbit of x0 is
the family ϕt(x0) when it is defined.

⇒ Think about the solutions of ordinary differential equations or
sequences...

⇒ For us, X will be a Banach space.

41



THE CAUCHY-LIPSCHITZ THEOREM

ẋ = F(t, x)

• F : I× Ω → X where Ω open set in X, Banach space.
• F is continuous, locally lipschitz in the second variable

Theorem
For all τ ∈ I and u0 ∈ Ω, there are δ > 0, α > 0 such that the system ẋ = F(t, x)

x(t0) = x0
(E)

has a unique solution defined on ]t0 − α, t0 + α[ for all x0 ∈ B(u0, δ), t0 ∈
]τ − δ, τ + δ[.

About the maximal solution:

Fact
Let J be the union of all time intervals containing t0 for which (E) has a
solution. Then, there is a solution x defined on J. All other solutions are
restriction of x.
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INVARIANTS SETS

⇒ Very important to understand the dynamics globally

Definition
An invariant set of a dynamical system (T, X, ϕt) is a subset S ⊂ X such that
x0 ∈ S implies ϕt(x0) ∈ S for all t ∈ T.

Example
An equilibrium is a point x0 such that ∀t ϕt(x0) = x0 when ϕt is defined

Example
A limit cycle is a periodic orbit

Example
A 2-torus. For example when the flow can be written ϕt(x0) = u(t, αt) with
u : [0, T]2 → X periodic wrt the 2 variables.
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STABILITY OF INVARIANT SETS 1/2

Definition
An invariant set S0 is stable if for any
sufficiently small neighborhood U of S0,
there exists a neighborhood V ⊂ U such
that ϕt(V) ⊂ U for all t > 0.

Definition
An invariant set S0 is unstable if it is not
stable.

1.3 Invariant sets 17

S0

0S

(a)

V

U U 0

(b)

FIGURE 1.10. (a) Lyapunov versus (b) asymptotic stability.

If x0 is a fixed point of a finite-dimensional, smooth, discrete-time dy-
namical system, then sufficient conditions for its stability can be formulated
in terms of the Jacobian matrix evaluated at x0.

Theorem 1.2 Consider a discrete-time dynamical system

x !→ f(x), x ∈ R
n,

where f is a smooth map. Suppose it has a fixed point x0, namely f(x0) =
x0, and denote by A the Jacobian matrix of f(x) evaluated at x0, A =
fx(x0). Then the fixed point is stable if all eigenvalues µ1, µ2, . . . , µn of A
satisfy |µ| < 1. !

The eigenvalues of a fixed point are usually called multipliers. In the
linear case the theorem is obvious from the Jordan normal form. Theorem
1.2, being applied to the N0th iterate fN0 of the map f at any point of
the periodic orbit, also gives a sufficient condition for the stability of an
N0-cycle.

Another important case where we can establish the stability of a fixed
point of a discrete-time dynamical system is provided by the following
theorem.

Theorem 1.3 (Contraction Mapping Principle) Let X be a complete
metric space with distance defined by ρ. Assume that there is a map f : X →
X that is continuous and that satisfies, for all x, y ∈ X,

ρ(f(x), f(y)) ≤ λρ(x, y),

with some 0 < λ < 1. Then the discrete-time dynamical system {Z+, X, fk}
has a stable fixed point x0 ∈ X. Moreover, fk(x) → x0 as k → +∞, starting
from any point x ∈ X. !

The proof of this fundamental theorem can be found in any text on math-
ematical analysis or differential equations. Notice that there is no restric-

Figure 5: Note: S0 is not asymptotically
stable
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STABILITY OF INVARIANT SETS 2/2

Definition
An invariant set S0 is asymptotically sta-
ble if it is stable and there is neighbor-
hood U of S0 such that d(ϕt(x0), S0) → 0
as t→ ∞ for all x0 ∈ U.

1.3 Invariant sets 17

S0

0S

(a)

V

U U 0

(b)

FIGURE 1.10. (a) Lyapunov versus (b) asymptotic stability.

If x0 is a fixed point of a finite-dimensional, smooth, discrete-time dy-
namical system, then sufficient conditions for its stability can be formulated
in terms of the Jacobian matrix evaluated at x0.

Theorem 1.2 Consider a discrete-time dynamical system

x !→ f(x), x ∈ R
n,

where f is a smooth map. Suppose it has a fixed point x0, namely f(x0) =
x0, and denote by A the Jacobian matrix of f(x) evaluated at x0, A =
fx(x0). Then the fixed point is stable if all eigenvalues µ1, µ2, . . . , µn of A
satisfy |µ| < 1. !

The eigenvalues of a fixed point are usually called multipliers. In the
linear case the theorem is obvious from the Jordan normal form. Theorem
1.2, being applied to the N0th iterate fN0 of the map f at any point of
the periodic orbit, also gives a sufficient condition for the stability of an
N0-cycle.

Another important case where we can establish the stability of a fixed
point of a discrete-time dynamical system is provided by the following
theorem.

Theorem 1.3 (Contraction Mapping Principle) Let X be a complete
metric space with distance defined by ρ. Assume that there is a map f : X →
X that is continuous and that satisfies, for all x, y ∈ X,

ρ(f(x), f(y)) ≤ λρ(x, y),

with some 0 < λ < 1. Then the discrete-time dynamical system {Z+, X, fk}
has a stable fixed point x0 ∈ X. Moreover, fk(x) → x0 as k → +∞, starting
from any point x ∈ X. !

The proof of this fundamental theorem can be found in any text on math-
ematical analysis or differential equations. Notice that there is no restric-

Figure 6: Note: S0 is not asymptotically stable
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STABILITY OF DISCRETE TIME DS

Theorem
Let x→ F(x), x ∈ Rn, F differentiable at xf and xf a fixed point of F: xf = F(xf).
Then xf is asymptotically stable if all the eigenvalues λ of dF(xf) satisfy
|λ| < 1.

Lemma
For A ∈ Mn(R), assume maxλ∈Σ(A) |λ| = r < ∞, then, for all ϵ > 0, there is
an equivalent norm such that |||A||| ≤ r+ ϵ.

Theorem
Let x→ F(x), x ∈ Rn, F differentiable at xf and xf a fixed point of F: xf = F(xf).
If one eigenvalue λ of dF(xf) satisfies |λ| > 1, then xf is not stable.

Exo: show this.
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STABILITY OF EQUILIBRIA (ODE)

Theorem
Let ẋ = F(x), x ∈ Rn, F C1 and xf an equilibrium: F(xf) = 0. Then xf is
asymptotically stable if all the eigenvalues λ of dF(xf) satisfy ℜ(λ) < 0.

Theorem
Let ẋ = F(x), x ∈ Rn, F C1 and xf an equilibrium: F(xf) = 0. If an eigenvalue
λ of dF(xf) satisfies ℜ(λ) > 0, then xf is not stable.
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SPIKING BEHAVIORS

(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

I as a parameter, see Lecture 3. 48



QUICK REMINDER

• Asymptotic stability of equilibria for maps: |λ| < 1 (multipliers)
• Asymptotic stability of equilibria for ODE: ℜλ < 0
• Asymptotic stability of periodic orbits for ODE: |λ| < 1 where
λ ∈ Spectrum(ΠΣ). (Floquet multipliers)

• Instability for maps (resp. ODEs) if there is λ such that |λ| > 1 (resp.
ℜλ > 0)

Can we be more quantitative?
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TWO FUNDAMENTAL EXAMPLES

1. The saddle-Node bifurcation
2. The Hopf bifurcation
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INVARIANT SETS



LOCAL STABLE MANIFOLD IN THE CONTINUOUS CASE

2.2 Classification of equilibria and fixed points 47

manifold, take the linear manifold Tu passing through the equilibrium and
apply the map ϕ1 to this manifold, where ϕt is the flow corresponding
to the system. The image of Tu under ϕ1 is some (nonlinear) manifold
of dimension n+ tangent to Tu at x0. Restrict attention to a sufficiently
small neighborhood of the equilibrium where the linear part is “dominant”
and repeat the procedure. It can be shown that the iterations converge
to a smooth invariant submanifold defined in this neighborhood of x0 and
tangent to Tu at x0. The limit is the local unstable manifold Wu

loc(x0). The
local stable manifold W s

loc(x0) can be constructed by applying ϕ−1 to T s.

Remark:
Globally, the invariant sets W s and Wu are immersed manifolds of di-

mensions n− and n+, respectively, and have the same smoothness proper-
ties as f . Having these properties in mind, we will call the sets W s and
Wu the stable and unstable invariant manifolds of x0, respectively. ♦

Example 2.2 (Saddles and saddle-foci in R3) Figure 2.4 illustrates
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FIGURE 2.4. (a) Saddle and (b) saddle-focus: The vectors νk are the eigenvectors
corresponding to the eigenvalues λk.

the theorem for the case where n = 3, n− = 2, and n+ = 1. In this
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apply the map ϕ1 to this manifold, where ϕt is the flow corresponding
to the system. The image of Tu under ϕ1 is some (nonlinear) manifold
of dimension n+ tangent to Tu at x0. Restrict attention to a sufficiently
small neighborhood of the equilibrium where the linear part is “dominant”
and repeat the procedure. It can be shown that the iterations converge
to a smooth invariant submanifold defined in this neighborhood of x0 and
tangent to Tu at x0. The limit is the local unstable manifold Wu

loc(x0). The
local stable manifold W s

loc(x0) can be constructed by applying ϕ−1 to T s.

Remark:
Globally, the invariant sets W s and Wu are immersed manifolds of di-

mensions n− and n+, respectively, and have the same smoothness proper-
ties as f . Having these properties in mind, we will call the sets W s and
Wu the stable and unstable invariant manifolds of x0, respectively. ♦

Example 2.2 (Saddles and saddle-foci in R3) Figure 2.4 illustrates
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the theorem for the case where n = 3, n− = 2, and n+ = 1. In this
Figure 7: a) Saddle b) Saddle-Foci
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HYPERBOLIC EQUILIBRIA - CONTINUOUS DS

ẋ = F(x), F smooth with F(x0) = 0

Let n−,n0,n+ be the number of eigenvalues of dF(x0) with negative, null,
positive real part counted with multiplicity.

Definitions
An equilibrium is:
• hyperbolic if n0 = 0
• a hyperbolic saddle if n−n+ ̸= 0

Since a generic matrix has no eigenvalues on the imaginary axis,
hyperbolicity is a typical property and an equilibrium in a generic system
(i.e., one not satisfying certain special conditions) is hyperbolic.
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INVARIANT SETS: LOCAL STABLE MANIFOLD - CONTINUOUS DS

Consider an equilibrium x0, its stable and unstable sets are defined as
subsets of

Ws
loc = {x : t→ ϕt(x) ∈ C1b(R+)}

Wu
loc = {x : t→ ϕt(x) ∈ C1b(R−)}

Exo: Check that the unstable manifold is not empty if the fixed point is
unstable.
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INVARIANT SETS: LOCAL STABLE MANIFOLD - CONTINUOUS CASE

Ws
loc = {x : t→ ϕt(x) ∈ C1b(R+)}

Define Es(resp. Eu) as the generalized eigenspace corresponding to the
eigenvalues of dF(x0) of negative (resp. positive) real part.

Theorem
Let x0 ∈ Rn be a hyperbolic equilibrium (i.e., n0 = 0,n− + n+ = n ) for
ẋ = F(x) with F ∈ C1(U), U neighborhood of x0 in Rn. Then, there is a
neighborhood V of x0 in U such that Ws

loc and Wu
loc are manifolds tangent to

Es and Eu at x = x0. More precisely:
• Ws

loc ∩ V = {x0 + v+Ψs(v), v ∈ Es ∩ V} with Ψs ∈ C1(Es ∩ V, Eu),
Ψs(0) = 0 and dΨs(0) = 0.

• Ws
loc ∩ V = {v ∈ V | lim

t→∞
ϕt(v) = x0}.

The dynamics on the manifold read

v̇ = ΠsF(x0 + v+Ψ(v))

where Πs is the projector on Es which commutes with dF(x0).
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INVARIANT SETS: LOCAL STABLE MANIFOLD - DISCRETE CASE

We simplify assumptions to ease the formulation.

x→ F(x), F and F−1 smooth with F(x0) = x0,

Let n−,n0,n+ be the number of eigenvalues of dF(x0) with modulus
< 1,= 1, > 1 counted with multiplicity.

Definitions
An equilibrium is:
• hyperbolic if n0 = 0
• a hyperbolic saddle if n−n+ ̸= 0
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LOCAL STABLE MANIFOLD IN THE DISCRETE CASE

Definitions
Consider an equilibrium x0, its stable (unstable) set is defined by

Ws(x0) = {x : lim
k→∞

Fk(x) = x0}

Wu(x0) = {x : lim
k→−∞

Fk(x) = x0}

Theorem
Let x0 ∈ Rn be a hyperbolic equilibrium (n0 = 0 ). Then the intersections
of Ws(x0) and Wu(x0) with a sufficiently small neighborhood of x0 contain
“smooth” submanifolds Ws

loc(x0) and Wu
loc(x0) of dimension n− and n+, re-

spectively.
Moreover,Ws

loc(x0) (resp. Wu
loc(x0)) is tangent to Es(resp. Eu) at x = x0 where

Es(resp. Eu) is the generalized eigenspace corresponding to the eigenvalues
λ of dF(x0) such that |λ| < 1 (|λ| > 1).

Proof analogous to continuous case if one substitutes ϕ1 by F.
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LOCAL STABLE MANIFOLD IN THE DISCRETE CASE

Example with positive/negative multiplier2.2 Classification of equilibria and fixed points 53
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FIGURE 2.8. Invariant manifolds of saddle fixed points on the plane: (a) positive
multipliers; (b) negative multipliers.

Moreover, one transversal intersection, if it occurs, implies an infinite
number of such intersections. Indeed, let x0 be a point of the intersection.
By definition, it belongs to both invariant manifolds. Therefore, the orbit
starting at this point converges to the saddle point x0 under repeated it-
eration of either f or f−1 : fk(x0) → x0 as k → ±∞. Each point of this
orbit is a point of intersection of W s(x0) and Wu(x0). This infinite num-
ber of intersections forces the manifolds to “oscillate” in a complex manner
near x0, as sketched in Figure 2.10(b). The resulting “web” is called the
Poincaré homoclinic structure. The orbit starting at x0 is said to be homo-
clinic to x0. It is the presence of the homoclinic structure that can make
the intersection of W s,u(x0) with any neighborhood of the saddle x0 highly
nontrivial.

The dynamical consequences of the existence of the homoclinic structure
are also dramatic: It results in the appearance of an infinite number of
periodic points with arbitrary high periods near the homoclinic orbit. This
follows from the presence of Smale horseshoes (see Chapter 1). Figure 2.11
illustrates how the horseshoes are formed. Take a (curvilinear) rectangle
S near the stable manifold W s(x0) and consider its iterations fkS. If the
homoclinic structure is present, for a sufficiently high number of iterations
N , fNS will look like the folded and expanded band Q shown in the figure.
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END OF LECTURE 1.
NEXT TIME:

- CENTER MANIFOLD
- NORMAL FORM THEORY
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