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DETAILS ABOUT THE LECTURE

Website of the lectures: http://romainveltz.pythonanywhere.com/teaching/

Go to https://sympa.inria.fr/sympa/info/cours_mmn_paris_2023_24 to
subscribe to the mailing list

Research axis:

- Emphasis on biology: modeling the synapse, pain.

- Mathematical modeling: mean-field, interplay between noise and
dynamics, space dependent neural networks (waves,...)

- Dynamics of spiking neurons with additional details: homeoplasticity,
dendritic compartment

- Effect of plasticity on network dynamics

- Bio-inspired Machine Learning



OVERALL GOAL OF LECTURES ON (DETERMINISTIC) METHODS

To provide tools for the study of dynamical behaviors of models in
neuroscience.

What is the working regime of a given phenomenon?

Empbhasis on spiking neurons.

- Reduction of these models (locally) to simple low dimensional ODE

- Reduction of these models (locally) based on a difference of time
scales?

- Understand the algorithms / maths behind the numerical tools to
investigate these models.

- To be able to build models that match a behavior.



SPIKING BEHAVIOR
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EXAMPLE OF NETWORK DYNAMICS [ROXIN-ETAL:06]
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ACTIVITY PATTERNS IN VISUAL CORTEX [BRESSLOFF-ETAL:03]
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MEAN-FIELD LIMITS [LUCON-ETAL:18]

dXe = (F(X) — K(Xe — E[X])) dt + V20dBy,t > 0

t =200 t =236

t t
Vi = Vo +/ b(Vu)du +J/ Ef (Vy) du 4 jumps
0 0



OUTLINE

http://romainveltz.pythonanywhere.com/teaching/

A few notions concerning the biology of the brain
Towards the Hodgkin-Huxley model

Simplified models of spiking neuron

Introduction to dynamical systems

Invariant sets

Stable/Unstable manifolds



A FEW NOTIONS CONCERNING THE BIOLOGY
OF THE BRAIN




DIFFERENT SCALES

~ 10" neurons, connected by ~ 10™ synapses. Glial cell number more
controversial

~10cm Whole brain

~1cm Brain structure/cortical areas

100pm- 1mm | Local network/‘column’/‘module’

10pm- 1mm Neuron

100nm- 1um | Sub-cellular compartments

~10nm Channel, receptor, intracellular protein

Figure 1: Picture by N.Brunel



A CARTOON NEURON
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DENDRITIC TREE




NEUROPIL

Figure 3: axons (Ax) synaptic contacts (Sy) dendritic shafts (D) spines (S) astrocytes (Ap). Fine
Structure of the Nervous System: Neurons and Their Supporting Cells



TOWARDS THE HODGKIN-HUXLEY MODEL




OUTLINE

Towards the Hodgkin-Huxley model



TOWARDS THE HODGKIN-HUXLEY MODEL
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THE BRAIN: AN ELECTRO-CHEMICAL MACHINE

lon channels Na'— K" ion pump
oNa" | Fes
F 3

Extracellular ® x'
Lipid bilayer ™ [

v I

+ + +
Intracellular ® Na @K 3Na @ (—\
ATP ADP+Pi

The channels are ion selective. More K inside, more Na*outside



THE BRAIN: AN ELECTRO-CHEMICAL MACHINE

Na™ K+ Electrode
Extracellular

FENET e

Intracellular




PASSIVE ION CHANNEL

= Interplay between diffusion and E
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THE NERNST EQUATION- REVERSAL / RESTING MEMBRANE POTENTIAL

We start with the Nernst-Planck equation which describes the ionic flux
accross the membrane

) = Jaigg 4 Jarie = —DVIX] — pz[X]VV

- zion valence

Improved by Goldman-Hodgkin-Katz equation which takes into account all

ions
20



THE NERNST EQUATION- REVERSAL / RESTING MEMBRANE POTENTIAL

= Case of a single ion specie

We start with the Nernst-Planck equation which describes the ionic flux
accross the membrane

) = Jaigg 4 Jarie = —DVIX] — pz[X]VV

- zion valence

« Einstein: p = 2

Improved by Goldman-Hodgkin-Katz equation which takes into account all
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THE NERNST EQUATION- REVERSAL / RESTING MEMBRANE POTENTIAL

We start with the Nernst-Planck equation which describes the ionic flux
accross the membrane

) = Jaigg 4 Jarie = —DVIX] — pz[X]VV

- zion valence

« Einstein: p = 2

Nernst equation:

- flux across a 1d membrane | = —D (V[X] + Z[X]VV)
- | =0 gives:
v _ RT . Xn
Ex = Vin Vout = T In [X]out

Improved by Goldman-Hodgkin-Katz equation which takes into account all

ions
20



EQUIVALENT MODEL

Na™ K™ Electrode
Extracellular

O

Intracellular
Ix = gx(V) - (V- Ex)

- More ion types of the Nernst-Planck equation —
Goldman-Hodgkin-Katz current
- Linearize GHK current
dv

C— =~ —Ina — Ik

dt

21



ACTIVE CHANNELS

Properties

- affected by membrane potential V

- affected by intracellular molecules/ions (Calcium)
- affected by extracellular molecules (Glu, GABA...)

- channels can be open / closed

- channels can be activated / inactivated

- Patch clamp: Fix V by adjusting I: gives | — V curve

Ix = @xmahb(V— Ex)

22



ACTIVE CHANNELS

Properties

- affected by membrane potential V

- affected by intracellular molecules/ions (Calcium)
- affected by extracellular molecules (Glu, GABA...)

- channels can be open / closed

- channels can be activated / inactivated

- Patch clamp: Fix V by adjusting I: gives | — V curve

- lon substitution: select some Ix (Hodgkin-Huxley 1952)

Ix = @xmahb(V— Ex)

22



ACTIVE CHANNELS

Properties

- affected by membrane potential V

- affected by intracellular molecules/ions (Calcium)
- affected by extracellular molecules (Glu, GABA...)

- channels can be open / closed

- channels can be activated / inactivated

- Patch clamp: Fix V by adjusting I: gives | — V curve
- lon substitution: select some Ix (Hodgkin-Huxley 1952)

- Toxin to block some channel, to select some Iy
- tetrodotoxin (fugu) for Nat channel
- tetraethylammonium for K+ channel

Ix = @xmahb(V— Ex)

22



\/@

i i
el

e mm aaaaaa )
........ MAMM mmmH

m%ﬁm > F
Mamm MVHE



ION CHANNELS ARE STOCHASTIC

Current (pA)

et

0 50 100 150 200 O 50 100 150 200
t (ms)

Figure 4: VGCC a) L-type b) T-type, from Sterratt.
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THE POTASSIUM CURRENT gx = gyn*, Ex =~ —72mV

0.3
Sk
0.2
0.1
0
0 2 4 6 8 10
t (ms)

(From Sterratt)

Qin
C= 0or2 =a,(V)(1-n)-
Bn
oltage clamp gives ne = 22~ - an=0. 01%

- Rising time: 7, = « Bn = 0.125exp(—(V + 65)/80)

1
an+Bn
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THE SODIUM CURRENT Gng = Gnam>h, Eng ~ 55mV

We compute gk(t) with previous equation

20 -
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(mS cm—2)
[x¥]
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Sodium conductance

o
L
b
b

t (ms)
a) Viest — Viest + 76mV b) Vyest — Viest + 88mV (From Sterratt)

Introduction of the state not inactivated h independent of the state m.
It is called the inactivation gate.

1
* Bm = hexp(—(V + 65)/18) " B = exp(—(V+35)/10)+1 .



SUMMARY 1/2

Their work earned them a Nobel prize in 1963.

CV =1—ggn*(V — Ex) — Gnam>h(V — Ena) — Gu(V — E1)

09 8 Th
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-50 0
Membrane Voltage (mV) Membrane Voltage (mV)
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SUMMARY 2/2

Their work earned them a Nobel prize in 1963.

- Model of membrane patch. Can be used for dendrites, axons...

- Derived for the squid at T ~ 10°C. Extended to mammals at 36°C by
[Traub-Mile:91]

- Detailed compartmental model NEURON simulator, HBP project.
- lons channels modeled by Markov Chains, PSICS simulator
- Finite size effects

- lon channel regulation (E. Marder, T. O'Leary...)

28



ACTION POTENTIAL,Eng ~ 55mV,Ex ~ —72mV
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“Relatively” straightforward, but see next...
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SIMPLIFIED MODELS OF SPIKING NEURON




OUTLINE

Simplified models of spiking neuron

31



A VARIETY OF MODELS

On the blackboard...

32



MORRIS-LECAR MODEL

Simple 2d excitable model with two channels.

Equations:

CV=1—gu(V— V) = geaMoo(V) - (V — Vea) — gkn - (V — Vi)
h = A(V)(nso (V) — 1)

where

Meo(V) = 1 (1 + tanh [

]),nm(V):%(Tthanh {V V3]),

A(V) = Xcosh [V V3}

- can generate AP
- there is a threshold for firing — see Lecture 3.

- possible oscillatory behavior

53



MORRIS-LECAR: PHASE DIAGRAMS

= =
[ 5‘0 1‘00 150 200 0 200 4(‘2 600 M!) 10‘00 1200 1400
t [msec] t [msec]
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L ' ok
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() (lext, V3) = (70,12) (d) (Text, V3) = (50.5,2)
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REDUCTION OF THE HH MODEL

Observation
- mm(V) is much smaller than 7,,(V),7 (V)
- (n,h) almost lieson a linen=>b —rh

This gives:
- m(V) = Mso (V)
- a system in the variables (V, n)

It shows that the V-nullcline has a cubic shape. It gives:

CV=1—gn*(V—Ex) — g—f“mw(vf(b —n)(V— Ena) — gu(V — Er)

= Reduction not trivial, use of singular perturbations and slow/fast
dynamics.

B85



FITZHUGH-NAGUMO

Simplified model to capture the essence of the cubic nature of the
V-nullcline

Equations:
V=V(V—-a)(1—-V)—w+I
W= e(V —yw)

- It has been used to model nerve conduction, heart...

- e is small so the recovery variable is much slower than voltage

36



NONLINEAR INTEGRATE AND FIRE

- Neglect the spike generation mechanism

- Previous models can be reduced to 2d
models with:
- fast membrane potential V: N-

nullcline

8 60 40 20 0 2 70
membrane potential, V (mV)

- slow recovery variable (K activation, Na a
inactivation...): sigmoid-shaped nullcline

aped

60 50 @0
membrane potential, V (mV)

CV=FV)—w+I
w=a(bV — w)

- Spike emitted at t = t* when V reaches a cutoff value 6 or when it blows
up.
- ResetV* —w cand w* — w* +d

37



SPIKING REGIMES FROM SIMPLIFIED MODELS

(A) tonic spiking (B) phasic spiking (C) tonic bursting (D) phasic bursting
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INTRODUCTION TO DYNAMICAL SYSTEMS




OUTLINE

Introduction to dynamical systems

40



Definition
A dynamical system is a triplet (T, X, ¢") where T C R ou Z, X is the state
space and ¢ : X — X is a family of operators such that:
¢ =1Id
_ ¢t+5 — ¢f O¢S
- The system maps an initial state xo to a state x(t) = ¢'(xo) at time t
- If T contains negative values, the system is said invertible

- The state ¢'(xo) may be defined only locally in time. The orbit of xo is
the family ¢'(xo) when it is defined.

= Think about the solutions of ordinary differential equations or
sequences...

= For us, X will be a Banach space.

41



THE CAUCHY-LIPSCHITZ THEOREM

X = F(t,X)

- F: 1 xQ— Xwhere Q open set in X, Banach space.
- Fis continuous, locally lipschitz in the second variable

Theorem
Forall 7 € I and ug € Q, there are 6 > 0, « > 0 such that the system

X = F(t,x)
X(to) = Xo

(E)

has a unique solution defined on |to — «, to + «f for all xo € B(uo,d),to €
7= 6,7+ 4]

About the maximal solution:
Fact
Let J be the union of all time intervals containing to for which (E) has a
solution. Then, there is a solution x defined on J. All other solutions are

restriction of x.
42



INVARIANTS SETS

= Very important to understand the dynamics globally

Definition
An invariant set of a dynamical system (T, X, ¢) is a subset S C X such that
Xo € Simplies ¢'(x0) € Sforallt € T.

Example
An equilibrium is a point xo such that Vt ¢'(xo) = Xo when ¢' is defined

Example
A limit cycle is a periodic orbit

Example
A 2-torus. For example when the flow can be written ¢'(xo) = u(t, at) with
u: [0,T]> — X periodic wrt the 2 variables.

43



STABILITY OF INVARIANT SETS 1/2

Definition

An invariant set Sp is stable if for any
sufficiently small neighborhood U of S,
there exists a neighborhood V C U such
that ¢'(V) c U forall t > 0.

b

Definition
An invariant set Sp is unstable if it is not

stable. Figure 5: Note: Sg is not asymptotically
stable

44



STABILITY OF INVARIANT SETS 2/2

W

Definition

An invariant set Sy is asymptotically sta-
ble if it is stable and there is neighbor-
hood U of Sy such that d(¢'(xo),So) — 0
ast— oo forallxo € U.

U,

Figure 6: Note: Sy is not asymptotically stable
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STABILITY OF DISCRETE TIME DS

Theorem

Letx — F(x), x € R", F differentiable at X' and x' a fixed point of F: X' = F(xX).
Then X is asymptotically stable if all the eigenvalues X of dF(X) satisfy
Al < 1.

Lemma
For A € Mp(R), assume maxyexa) |A| = r < oo, then, for all e > 0, there is
an equivalent norm such that |||A]|| < r+e

Theorem
Letx — F(x), x € R", F differentiable at X and X’ a fixed point of F: X' = F(x).
If one eigenvalue A of dF(X’) satisfies |A| > 1, then X is not stable.

Exo: show this.

46



STABILITY OF EQUILIBRIA (ODE)

Theorem
let X = F(x), x € R", F C' and X an equilibrium: F(X) = 0. Then X' is
asymptotically stable if all the eigenvalues X of dF(x') satisfy R()) < 0.

Theorem
Letx = F(x), x € R", FC" and X an equilibrium: F(X') = 0. If an eigenvalue
X of dF(X) satisfies R(\) > 0, then X is not stable.

47



SPIKING BEHAVIORS
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| as a parameter, see Lecture 3.
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QUICK REMINDER

- Asymptotic stability of equilibria for maps: [A| < 1 (multipliers)
- Asymptotic stability of equilibria for ODE: oA < 0

- Asymptotic stability of periodic orbits for ODE: |\
X € Spectrum(N*). (Floquet multipliers)

< 1 where

- Instability for maps (resp. ODEs) if there is A such that |A| > 1 (resp.
NA > 0)

Can we be more quantitative?

49



TWO FUNDAMENTAL EXAMPLES

1. The saddle-Node bifurcation
2. The Hopf bifurcation

50



INVARIANT SETS




LOCAL STABLE MANIFOLD IN THE CONTINUOUS CASE

Re v,

mv,

Figure 7: a) Saddle b) Saddle-Foci
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HYPERBOLIC EQUILIBRIA - CONTINUOUS DS

X = F(x), F smooth with F(xo) = 0

Let n—, no, ny be the number of eigenvalues of dF(xo) with negative, null,
positive real part counted with multiplicity.

Definitions
An equilibrium is:
- hyperbolic if np =0
- a hyperbolic saddle if n_n; # 0

Since a generic matrix has no eigenvalues on the imaginary axis,
hyperbolicity is a typical property and an equilibrium in a generic system
(i.e., one not satisfying certain special conditions) is hyperbolic.
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INVARIANT SETS: LOCAL STABLE MANIFOLD - CONTINUOUS DS

Consider an equilibrium xo, its stable and unstable sets are defined as
subsets of
Wlsoc = {X s =D ¢t(X) € CL(R+)}

Wfac = {X = (bt(x) € CE)(R_)}

Exo: Check that the unstable manifold is not empty if the fixed point is
unstable.
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INVARIANT SETS: LOCAL STABLE MANIFOLD - CONTINUOUS CASE

Wlsoc = {X 3= d)t(x) € CL(R+)}

Define E°(resp. E) as the generalized eigenspace corresponding to the
eigenvalues of dF(xo) of negative (resp. positive) real part.

Let xo € R" be a hyperbolic equilibrium (i.e, no = 0,n_ +ny, = n ) for
X = F(x) with F € C'(U), U neighborhood of xo in R". Then, there is a
neighborhood V of xo in U such that W;,. and W, are manifolds tangent to
F° and EY at X = Xo. More precisely:

Wi NV = {xo + v+ W(v), ve BNV} with v° € C'(E° NV, EY),

V*(0) = 0 and dw*°(0) = 0.

W,.NV={veV| Jim. #'(V) = Xo}.

The dynamics on the manifold read
V=T"F(xo + v+ W())

where I° is the projector on E° which commutes with dF(xo).
55



INVARIANT SETS: LOCAL STABLE MANIFOLD - DISCRETE CASE

We simplify assumptions to ease the formulation.

x — F(x), Fand F~" smooth with F(xo) = Xo,
Let n—, no, n4+ be the number of eigenvalues of dF(xo) with modulus
< 1,=1,> 1 counted with multiplicity.

Definitions
An equilibrium is:
- hyperbolic if np = 0
- a hyperbolic saddle if n_n; # 0
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LOCAL STABLE MANIFOLD IN THE DISCRETE CASE

Definitions
Consider an equilibrium xo, its stable (unstable) set is defined by

Wi (x0) = {x: lim Fo(x) = xo}

W(x0) = {x: lim F(x) = xo}

Let xo € R" be a hyperbolic equilibrium (ny = 0 ). Then the intersections
of WP(xo) and W*(xo) with a sufficiently small neighborhood of x, contain
“smooth” submanifolds W}, .(xo) and W, .(xo) of dimension n_ and n., re-
spectively.

Moreover,W;, . (xo) (resp. Wi (o)) is tangent to E*(resp. E) at x = xo where
E°(resp. EY) is the generalized eigenspace corresponding to the eigenvalues
A of dF(xo) such that || < 1 (|| > 1).

Proof analogous to continuous case if one substitutes ¢' by F.
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LOCAL STABLE MANIFOLD IN THE DISCRETE CASE

Example with positive/negative multiplier

Xo

(b)
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END OF LECTURE 1.
NEXT TIME:
- CENTER MANIFOLD
- NORMAL FORM THEORY
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