Mathematical Methods for Neurosciences. Paris 6 - Master Maths-Bio ENS - Master MVA (2023-2024)

Etienne Tanré - Romain Veltz

Inria

November 2nd, 2023

Image: A math the second se

# Outline

## Introduction

2 On the convergence rate of Monte Carlo methods

#### 3 Simulation

4 Low discrepancy sequences

#### Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

4 A I

# Outline

## 1 Introduction

2 On the convergence rate of Monte Carlo methods

#### 3 Simulation

4 Low discrepancy sequences

#### Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

| _ |         |       |
|---|---------|-------|
| - | lanre / | Inria |
| _ |         | IIIIa |
|   |         |       |

## Hodgkin-Huxley Model

$$C\dot{V} + I_{\rm Na} + I_{\rm K} + I_{\rm L} = I,$$

with  $I_k := G_k(V - E_k)$  (intensity of the ionic current k for Na, K or L)

$$egin{aligned} G_{\mathrm{L}} &:= ar{g}_{\mathrm{L}} \ G_{\mathrm{K}} &:= ar{g}_{\mathrm{K}} n^4 \ G_{\mathrm{Na}} &:= ar{g}_{\mathrm{Na}} m^3 h_{\mathrm{L}} \end{aligned}$$

The proportion of open channels satisfy

$$\dot{n} = \alpha_n(V)(1-n) - \beta_n(V)n$$
  
$$\dot{m} = \alpha_m(V)(1-m) - \beta_m(V)m$$
  
$$\dot{h} = \alpha_h(V)(1-h) - \beta_h(V)h.$$

イロト イヨト イヨト

## Motivation

- What is *really* random?
- Stochastic Models in general
- Sources of noise in neuronal activities
- Monte Carlo Methods
- Efficiency



Figure: From "Neuronal Noise", Alain Destexhe and Michelle Rudolph-Lilith

э

6/46

イロト イヨト イヨト

# Noise in neuronal activity

- Thermal noise
- Channel noise
- Electrical noise
- Synaptic noise

イロト イヨト イヨト イ

2

## Toy example

$$A=\int_0^1 f(\theta)\,d\theta$$

Image: A math the second se

## Toy example

$$A = \int_0^1 f(\theta) \, d\theta \qquad A = \mathbb{E}\left[f(U)\right]$$

Image: A math the second se

## Toy example

$$A = \int_0^1 f(\theta) \, d\theta \qquad A = \mathbb{E}\left[f(U)\right]$$
$$\tilde{A} = \iiint_{[0,1]^3} f(\theta_1, \theta_2, \theta_3) \, d\theta_3 d\theta_2 d\theta_1 \qquad \tilde{A} = \mathbb{E}\left[f(U_1, U_2, U_3)\right]$$

Toy example

$$A = \int_0^1 f(\theta) \, d\theta \qquad A = \mathbb{E}\left[f(U)\right]$$

$$\tilde{A} = \iiint_{[0,1]^3} f(\theta_1, \theta_2, \theta_3) d\theta_3 d\theta_2 d\theta_1 \qquad \tilde{A} = \mathbb{E} \left[ f(U_1, U_2, U_3) \right]$$

Heat Equation and Brownian Motion

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) + \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) = 0\\ u(T,x) = \Psi(x) \end{cases}$$

・ロト ・日 ・ ・ ヨ ・ ・

Toy example

$$A = \int_0^1 f(\theta) \, d\theta \qquad A = \mathbb{E}\left[f(U)\right]$$

$$\tilde{A} = \iiint_{[0,1]^3} f(\theta_1, \theta_2, \theta_3) d\theta_3 d\theta_2 d\theta_1 \qquad \tilde{A} = \mathbb{E} \left[ f(U_1, U_2, U_3) \right]$$

Heat Equation and Brownian Motion

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) + \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) = 0\\ u(T,x) = \Psi(x) \end{cases}$$
$$u(t,x) = \mathbb{E}\left[\Psi(W_T)|W_t = x\right] \end{cases}$$

8/46

< ロ > < 同 > < 回 > < 回 >

# Outline

#### Introduction

2 On the convergence rate of Monte Carlo methods

#### 3 Simulation

4 Low discrepancy sequences

#### Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

# Strong Law of Large Numbers

#### Theorem (Law of Large Numbers)

Consider a random variable X, such that  $\mathbb{E}(|X|) < \infty$ . We denote the mean  $\mu := \mathbb{E}(X)$ . We consider a sample of n independent random variables  $X_1, \dots, X_n$  with the same law as X. Then

$$\frac{X_1+\cdots+X_n}{n} \xrightarrow[n\to\infty]{a.s.} \mu.$$

• • • • • • • • • • •

# Central Limit Theorem

#### Theorem

Consider a random variable X, such that  $\mathbb{E}(|X|^2) < \infty$ . Denote the mean and variance by  $\mu := \mathbb{E}(X)$ ,  $\sigma^2 = \mathbb{E}\left[(X - \mathbb{E}(X))^2\right] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$ . Let us consider a sample of n i.i.d random variables  $X_1, \dots, X_n$  with the same law as X. Then

$$\frac{\sqrt{n}}{\sigma}\left(\frac{X_1+\cdots+X_n}{n}-\mu\right)\underset{n\to\infty}{\xrightarrow{\mathcal{L}}}\mathcal{N}(0,1).$$

Image: A math the second se

## Confidence intervals

Assume  $\mu = \mathbb{E}(X)$ . An estimator of  $\mu$  is

$$\hat{\mu}^n := \frac{1}{n} \left( X_1 + \dots + X_n \right)$$

• Assume *n* is large enough to be in the asymptotic regime.

• 
$$\mathbb{P}\left[\frac{\sqrt{n}}{\sigma}\left(\hat{\mu}^n-\mu\right)\in A
ight]\approx\mathbb{P}\left(G\in A
ight)$$
 where  $G\sim\mathcal{N}(0,1)$ 

•  $\forall \alpha$  there exists  $y_{\alpha}$  such that  $\mathbb{P}(|G| \leq y_{\alpha}) = \alpha$ 

An example of the size of the confidence interval For  $\alpha = 95\%$ ,  $y_{\alpha} = 1.96$ .

$$\mathbb{P}\left(\mu \in \left[\hat{\mu}^n - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu}^n + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \geq 95\%$$

< ロ > < 同 > < 回 > < 回 >

# A non asymptotic estimate

#### Theorem (Berry-Esseen)

Let  $(X_i)_{i\geq 1}$  be a sequence of independent and identically distributed random variables with zero mean. Denote by  $\sigma$  the common standard deviation. Suppose that  $\mathbb{E}|X|^3 < +\infty$ . Then

$$\varepsilon_{N} := \sup_{x \in \mathbb{R}} \left| \mathbb{P} \left( \frac{X_{1} + \dots + X_{N}}{\sigma \sqrt{N}} \le x \right) - \int_{-\infty}^{x} e^{-u^{2}/2} \frac{du}{\sqrt{2\pi}} \right|$$
$$\leq \frac{C \mathbb{E} |X_{1}|^{3}}{\sigma^{3} \sqrt{N}}.$$

In addition,  $0.398 \leq C \leq 0.8$ .

For a proof, see, e.g., Shiryayev (1984).

## A more precise result

We now give a result which is slightly more precise than the Berry-Esseen Theorem: the estimate is non uniform in x. See Petrov (1975) for a proof and extensions.

## Theorem (Bikelis)

Let  $(X_i)_{i\geq 1}$  be a sequence of independent real random variables, which are not necessarily identically distributed. Suppose that  $\mathbb{E}X_i = 0$  for all *i*, and that there exists  $0 < \delta \leq 1$  such that  $\mathbb{E}|X_i|^{2+\delta} < +\infty$  for all *i*. Set

$$\sigma_i^2 := \mathbb{E} X_i^2, \quad B_N := \sum_{i=1}^N \sigma_i^2, \quad F_N(x) := \mathbb{P}\left[\frac{\sum_{i=1}^N X_i}{\sqrt{B_N}} \le x\right].$$

Denote by  $\Phi$  the distribution function of a Gaussian law with zero mean and unit variance. There exists a universal constant A in  $(\frac{1}{\sqrt{2\pi}}, 1)$  independent of N and of the sequence  $(X_i)_{i\geq 1}$ , such that, for all x,

$$|F_N(x) - \Phi(x)| \leq rac{A}{B_N^{1+\delta/2}(1+|x|)^{2+\delta}} \sum_{i=1}^N \mathbb{E}|X_i|^{2+\delta}$$

# Outline

#### Introduction

On the convergence rate of Monte Carlo methods

### 3 Simulation

#### Low discrepancy sequences

#### Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

| _        | - /   |       |
|----------|-------|-------|
| H-       | lanre | Inria |
| <u> </u> | Tanic |       |
|          |       | •     |

## Uniform Law

Generating a sequence  $U_1, \dots, U_n$  of i.i.d. uniform random variables Properties

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}_{a\leq U_{i}\leq b}\approx b-a\quad\forall a,b\in[0,1]$$
$$\frac{1}{n}\sum_{i=1}^{n}\left(U_{2i+1}-\frac{1}{2}\right)\left(U_{2i+2}-\frac{1}{2}\right)\approx 0$$
etc.

## Congruencial generator

- $N_{max} \in \mathbb{N}$
- $n_0 \in \mathbb{N}$

• 
$$n_{k+1} \equiv an_k + b \pmod{N_{max}}$$

• 
$$u_k = \frac{n_k}{N_{max}}$$

E. Tanré (Inria )

16/46

イロン イヨン イヨン イヨン

#### Remarks

- O This sequence (u<sub>k</sub>)<sub>k≥1</sub> mimics a sequence of independent random variable uniformly distributed on (0,1) but it is a deterministic sequence.
- ② It allows us to compare several methods with the same random events
- These sequences are periodic
- We have to take care to the period: as long as possible.
- A good choice: Mersenne Twister.

#### Do not forget

If you want to use a software or a given language in order to apply stochastic numerical methods, you have to find its own uniform random generator or to download a good uniform generator.

# **Rejection Procedure**

## Principle

۲

- Our aim is to estimate  $\mathbb{E}[FG]$  with  $0 \le G \le 1$  almost surely.
- The idea : write  $G = \tilde{\mathbb{P}}(X) (= \mathbb{P}(X|F,G))$

 $\mathbb{E}[FG] = \mathbb{E}[F \mathbb{1}_X] \\ = \mathbb{E}[F|X] \mathbb{E}[G]$ 

э

## Simulation of a random variable with a rejection procedure

- Let X be a r.v. with density f. We do not know how to simulate it.
- Let Y be a r.v. with density g. We know how to simulate it.
- Assumption:  $\forall x \in \mathbb{R}$   $0 \leq f(x) \leq Cg(x)$ . We set  $h(x) := \frac{f(x)}{Cg(x)} \mathbb{1}_{\{g(x)>0\}}$

$$\mathbb{E}\left[\varphi(X)\right] = \int \varphi(x)f(x)dx = \int \varphi(x)\frac{f(x)}{g(x)}g(x)dx$$
$$= \mathbb{E}\left[\varphi(Y)\frac{f(Y)}{g(Y)}\right] = C\mathbb{E}\left[\varphi(Y)\frac{f(Y)}{Cg(Y)}\right] = C\mathbb{E}\left[\varphi(Y)h(Y)\right]$$
$$= C\mathbb{E}\left[\varphi(Y)\mathbb{1}_{\{U \le h(Y)\}}\right]$$
$$= C\mathbb{E}\left[\varphi(Y)|U < h(Y)\right]\mathbb{P}\left[U \le h(Y)\right]$$

イロト イヨト イヨト イヨト

2

20/46

 $\mathbb{E}\left[\varphi(X)\right] = C\mathbb{E}\left[\varphi(Y) | U < h(Y)\right] \mathbb{P}\left[U \le h(Y)\right]$  $= \mathbb{E} \left[ \varphi(Y) | U < h(Y) \right]$ 

$$\mathbb{P}\left[U \le h(Y)\right] = \mathbb{E}\left[h(Y)\right]$$
$$= \int \frac{f(y)}{Cg(y)}g(y)dy = \int \frac{f(y)}{C}dy$$
$$= \frac{1}{C}$$

# Algorithm

Generate Y

- Compute for this realisation  $\frac{f(Y)}{Cg(Y)}$
- Senerate a random variable U, indep. of Y, with uniform law on (0, 1).

## Remark

- You have to wait a random time to obtain each realisation
- The probability of acceptance is equal to  $\frac{1}{C}$ .
- Smaller is C, better is the algorithm.

• • • • • • • • • • • •

# Outline

#### Introduction

2 On the convergence rate of Monte Carlo methods

#### 3 Simulation

#### 4 Low discrepancy sequences

#### Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

| _ |         |       |
|---|---------|-------|
| - | lanre / | Inria |
| _ |         | IIIIa |
|   |         |       |

• • • • • • • • • • •

# Low discrepancy Sequences

Using sequences of points more regular than random points may sometimes improve Monte Carlo methods. We look for deterministic sequences  $(x_i, i \ge 1)$  such that

$$\int_{[0,1]^d} f(x) dx \approx \frac{1}{n} \left( f(x_1) + \cdots + f(x_n) \right)$$

for all function f in a large enough set.

## Definition

These methods with deterministic sequences are called quasi Monte Carlo methods.

One can find sequences such that the speed of convergence of the previous approximation is of order  $K \frac{\log(n)^d}{n}$ 

< ロ > < 同 > < 回 > < 回 >

# Low discrepancy Sequences (2)

## Definition (Uniformly distributed sequences)

For all  $y, z \in [0, 1]^d$ , we say that  $y \le z$  if  $\forall i = 1, ..., d, y^i \le z^i$ . A sequence  $(x_1, i \ge 1)$  is said to be uniformly distributed on  $[0, 1]^d$  if one of the following equivalent properties is fulfilled:

 $\lim_{n\to\infty}D_n^*(x)=0$ 

• For every (bounded) continuous function f on  $[0,1]^d$ 

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n f(x_k) = \int_{[0,1]^d} f(x)dx$$

< ロ > < 同 > < 回 > < 回 >

# Low discrepancy Sequences(3)

#### Remark

If  $(U_n)_{n\geq 1}$  is a sequence of independent random variables with uniform law on [0, 1], the random sequence

$$(U_n(\omega), n \ge 1)$$

- is almost surely uniformly distributed.
- The discrepancy fulfills an iterated logarithm law

$$\limsup_{n} \sqrt{\frac{2n}{\log(\log n)}} D_n^*(U) = 1 \quad \text{a.s.}$$

## Lower bound for the discrepancy: Roth Theorem

The discrepancy of any infinite sequence satisfies the property

$$D_n^* > C_d \frac{(\log n)^{\frac{d-1}{2}}}{n}$$
 for  $d \ge 3$ 

for an infinite number of values of n, where  $C_d$  is a constant which depends on d only.

# Low discrepancy Sequences (4)

#### Koksma-Hlawka inequality

Let g be a finite variation function in the sense of Hardy and Krause and denote by V(g) its variation. Then, for  $n \ge 1$ ,

$$\left|rac{1}{N}\sum_{k=1}^N g(x_k) - \int_{[0,1]^d} g(u)du
ight| \leq V(g)D_N^*(x)$$

Finite variation function in the sense of Hardy and Krause

If the function g is d times continuously differentiable, the variation V(g) is given by

$$\sum_{k=1}^{d} \sum_{1 \le i_1 < \ldots < i_k \le d} \int_{\begin{cases} x \in [0,1]^d \\ x_j = 1 \text{ for } j \neq i_1, \ldots, i_k \end{cases}} \left| \frac{\partial^k g(x)}{\partial x_{i_1} \cdots \partial x_{i_k}} \right| dx_{i_1} \cdots dx_{i_k}$$

# Popular Quasi Monte Carlo Sequences

- Faure sequences
- e Halton sequences
- Sobol sequences
- van der Corput sequences

#### An upper bound

For such sequences, we obtain an upper bound of the discrepancy:

$$D_n^* \leq C \frac{(\log n)^d}{n}$$

## Remark

- For small *d*: deterministic methods
- For moderated d: Quasi Monte Carlo methods
- For large d: Monte Carlo methods

27 / 46

A B A B A B A

## Low discrepancy Sequences



Figure: Halton Points

Figure: (Pseudo) uniform points

< □ > < □ > < □ > < □ > < □ >

э

# Outline

#### Introduction

2 On the convergence rate of Monte Carlo methods

#### 3 Simulation

4 Low discrepancy sequences

#### 5 Poisson

- Poisson distribution
- Poisson Processes
- Point Poisson Processes

# Remind on Poisson laws

## Definition (Poisson law)

The random variable Y has Poisson law of parameter  $\lambda$  if and only if

•  $Y \in \mathbb{N}$  almost surely.

• 
$$\mathbb{P}(Y = k) = \exp(-\lambda)\frac{\lambda^{\kappa}}{k!}$$

#### Property

Let  $Y \sim \mathcal{P}(\lambda)$  and  $Z \sim \mathcal{P}(\beta)$  be two independent Poisson random variables.

$$\Lambda := Y + Z \sim \mathcal{P}(\lambda + \beta)$$

э

イロト イポト イヨト イヨト

## Remind on Poisson laws

## Proof.

$$\mathbb{P}(\Lambda = k) = \sum_{i=0}^{k} \mathbb{P}(Y = i, Z = k - i)$$
$$= \sum_{i=0}^{k} \mathbb{P}(Y = i) \mathbb{P}(Z = k - i)$$
$$= \sum_{i=0}^{k} \exp(-\lambda) \frac{\lambda^{i}}{i!} \exp(-\beta) \frac{\beta^{k-i}}{(k-i)!}$$
$$= \frac{\exp(-(\lambda + \beta))}{k!} \sum_{i=0}^{k} {k \choose i} \lambda^{i} \beta^{k-i}$$
$$= \exp(-(\lambda + \beta)) \frac{(\lambda + \beta)^{k}}{k!}.$$

2

イロン イロン イヨン イヨン

# Rarefaction Poisson

#### Notation

- let Y be a Poisson random variable with parameter  $\lambda$
- let  $(\xi_i, i \ge 1)$  a sequence of *i.i.d.* random variables, independent of Y, which take values in a countable set I

$$\mathbb{P}(\xi_1=i)=p_i.$$

• For any  $i \in I$ , we introduce

$$\boldsymbol{Y}^{(i)} = \sum_{j=1}^{Y} \mathbb{1}_{\{\xi_j=i\}}$$

#### Conclusion

The random variables  $Y^{(1)}, \dots, Y^{(i)}, \dots$  are independent with Poisson laws of parameters  $\lambda p_i$ .

< ロ > < 同 > < 回 > < 回 >

# Counting Processes

## Definition

A counting process  $(N(t), t \ge 0)$  is a stochastic process

- N(0) = 0 almost surely
- N is almost surely non-decreasing
- $t \mapsto N(t)$  is almost surely cadlag
- N is piecewise constant and has jump of size 1.

## Remark

A counting process is used to model the number of times that a particular phenomenon has been observed by time t (typical example in neuroscience is the number of spikes emitted by a neuron).

# Poisson Process

#### Definition

A counting process is a Poisson process if it satisfies the following conditions:

- Numbers of observations in disjoint time intervals are independent random variables, i.e., if  $t_0 < t_1 < \cdots < t_m$ , then  $N(t_k) N(t_{k-1})$ ,  $k = 1, \cdots, m$  are independent random variables.
- **2** The distribution of N(t + a) N(t) does not depend on t.

#### Theorem

If N is a Poisson process, then there is a constant  $\lambda > 0$  such that, for s < t, N(t) - N(s) is Poisson distributed with parameter  $\lambda(t - s)$ , i.e

$$\mathbb{P}(N(t) - N(s) = k) = \frac{(\lambda(t-s))^k}{k!} \exp(-\lambda(t-s)).$$

# Proof

#### Step 1

For any  $n\geq 1$ , we write  $p_n=\mathbb{P}\left(N((k+1)/n)-N(k/n)\geq 1
ight).$ 

$$\mathbb{P}(N(1) = 0) = (1 - p_n)^n$$
  

$$\lambda = -\log(\mathbb{P}(N(1) = 0))$$
  

$$= -n\log(1 - p_n)$$
  

$$= \lim_n np_n. \qquad \Rightarrow \qquad \mathbb{P}(N(1) = 0) = \exp(-\lambda)$$

**Step 2** Let denote  $q_n = \mathbb{P}(N(1/n) \ge 2)$ . Denote  $\Gamma_n$  the number of intervals [k/n, (k+1)/n] containing at least 2 arrivals.

- For  $\Gamma_n(\omega) \rightarrow_n 0$  for almost all  $\omega$  (the time arrival are different).
- Γ<sub>n</sub> ≤ N(1)
- We have  $\mathbb{E}(N(1)) < \infty( ext{admitted})$
- So, we conclude  $\mathbb{E}(\Gamma_n) \rightarrow_n 0$  (Fubini), that is  $nq_n$  tends to 0.

#### Step 3

We deduce that  $\lim_{n} n\mathbb{P}(N(1/n) = 1) = \lim_{n} n\mathbb{P}(N(1/n) \ge 1) = \lambda$ .

3

35 / 46

イロト 不得 トイヨト イヨト

$$\mathbb{P}(N(1) = 1) = \binom{n}{1} p_n (1 - p_n)^{n-1}$$
$$\approx n \frac{\lambda}{n} (1 - \frac{\lambda}{n})^{n-1}$$
$$\approx \lambda \exp(-\lambda)$$

The end of the proof is similar to the next one.

2

< □ > < □ > < □ > < □ > < □ >

# Construction of Poisson Processes

#### A non-decreasing random walk

Consider the random walk  $S_n$ :

$$S_0 = 0, \qquad S_{k+1} = S_k + X_{k+1},$$

where  $X_1, \dots, X_k, \dots$  are *i.i.d.* random variables

$$\mathbb{P}(X_k=1)=p=1-\mathbb{P}(X_k=0).$$

Let  $\lambda > 0$  and  $t_1 < t_2 < \cdots < t_\ell$  and consider sequences, p(n),  $n_1(n)$ ,  $\cdots$ ,  $n_\ell(n)$  such that

$$\lim_{n} np(n) = \lambda \quad \text{and} \quad \forall i \in 1, \cdots, \ell, \quad \lim_{n} \frac{n_i(n)}{n} = t_i,$$

#### Result

$$(S_{n_i(n)} - S_{n_{i-1}(n)}, 1 \leq i \leq \ell) \stackrel{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} (Y_1, Y_2, \cdots, Y_\ell)$$

where  $Y_i$  are independent r.v. with Poisson laws of parameters  $\lambda(t_i - t_{i-1})$ .

Proof.

$$\mathbb{P}(S_{n_1(n)} = k) = \binom{n_1(n)}{k} p(n)^k (1 - p(n))^{n_1(n) - k}$$
$$\approx \frac{(t_1 n)!}{k! (t_1 n - k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{t_1 n - k}$$

## Remind

(Stirling) 
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
,  $\lim_n \left(1 + \frac{u}{n}\right)^n = \exp(u)$ 

$$\mathbb{P}(S_{n_1(n)} = k) \approx \frac{\sqrt{2\pi t_1 n}}{\sqrt{2\pi (t_1 n - k)}} \left(\frac{t_1 n}{e}\right)^{t_1 n} \left(\frac{e}{t_1 n - k}\right)^{t_1 n - k} \frac{1}{n^k} \frac{\lambda^k}{k!} \exp(-\lambda t_1)$$
$$\approx \exp(-\lambda t_1) \frac{(\lambda t_1)^k}{k!} e^{-k} \left(1 + \frac{k}{t_1 n - k}\right)^{t_1 n} \approx \exp(-\lambda t_1) \frac{(\lambda t_1)^k}{k!}.$$

## A dual approach

- Let N be a Poisson process.
- We define  $S_k$  the time of the *k*th observation, that is  $N(S_k-) = k 1$  and  $N(S_k) = k$ .
- We have

$$\{N(t)\geq k\}=\{S_k\leq t\}$$

• The c.d.f of  $S_k$  is

$$\mathbb{P}(S_k \leq t) = 1 - \sum_{i=0}^{k-1} \exp(-\lambda t) \frac{(\lambda t)^i}{i!}$$

• The p.d.f of  $S_k$  is

$$rac{d}{dt}\mathbb{P}(S_k\leq t)=rac{1}{(k-1)!}\lambda(\lambda t)^{k-1}\exp(-\lambda t).$$

Image: A math the second se

# Distribution of the inter-events interval

- Let *N* be a Poisson process.
- We define  $S_k$  the time of the *k*th observation, that is  $N(S_k-) = k 1$  and  $N(S_k) = k$ .
- We denote  $T_k = S_k S_{k-1}$ .

### Proposition

The random times  $(T_k, k \ge 1)$  are i.i.d. with exponential law of parameter  $\lambda$ .

## Proof.

- We have already proved the result for k = 1.
- Let us prove for  $(T_1, T_2)$

$$\begin{split} \mathbb{P}(T_1 > t, T_2 > s) &= \mathbb{P}(N(t) < 1, N(T_1 + s) < 2) \\ &= \mathbb{P}(N(t) = 0, N(T_1 + s) - N(T_1) = 0) \\ &= \mathbb{P}(N(t) = 0)\mathbb{P}(N(T_1 + s) - N(T_1) = 0) \\ &= \exp(-\lambda t)\exp(-\lambda s) \\ &= \mathbb{P}(T_1 > t)\mathbb{P}(T_2 > s). \end{split}$$

Poisson process with time dependent intensity

## Definition

- Let  $(\lambda(t), t \ge 0)$  be a deterministic function.
- The process  $(N(t), t \ge 0)$  is a Poisson process with intensity  $\lambda$  if
  - **1** N(0) = 0 a.s.
  - It is a.s. a non decreasing cadlag process
  - $\bigcirc$  N is a.s. piecewise constant with jumps of size 1
  - **(**) For any Borel set A, we consider the number of jumps of N in A, i.e.

$$N^{(A)} = \sum_{s \in A} \mathbb{1}_{\{N(s) - N(s-) = 1\}}$$

then

$$N^{(A)} \sim \mathcal{P}\left(\int_A \lambda(s) ds\right).$$

**③** If  $A_1, \dots, A_\ell$  are Borel set such that  $A_i \cap A_j = \emptyset$  if  $i \neq j$ , then  $N^{(A_1)}, \dots, N^{(A_\ell)}$  are independent.

41/46

## Dual approach

- Let N be a Poisson process on  $\mathbb{R}^+$  with non-negative intensity  $(\lambda(t), t \ge 0).$
- Denote by  $(S_k, k \ge 1)$  the (random) jump times of N:

$$N(t) = egin{cases} 0 & ext{if } 0 \leq t < S_1 \ 1 & ext{if } S_1 \leq t < S_2 \ 2 & ext{if } S_2 \leq t < S_3 \ \cdots & \ k & ext{if } S_k \leq t < S_{k+1} \end{cases}$$

• Denote  $(T_k, k \ge 1)$  the inter-arrival times:

$$T_k=S_k-S_{k-1}.$$

$$\mathbb{P}(T_k \geq t | S_{k-1}) = \exp\left(-\int_{S_{k-1}}^{S_{k-1}+t} \lambda(\theta) d\theta\right)$$

۵

• • • • • • • • • • • •

# Simulation of $T_1, \cdots, T_k, \cdots$

Inversion of the cumulative distribution function

$${\sf F}_{{\cal T}_1}(t):=\mathbb{P}({\cal T}_1\leq t)=1-\exp\left(-\int_0^t\lambda( heta)d heta
ight)$$

The time  $T_1$  is given by

$$\int_0^{T_1} \lambda( heta) d heta \sim -\log(1-U) \sim -\log(U)$$

 $\Longrightarrow$  Compute the antiderivative of  $\lambda$  !

## Algorithm

- Simulate a uniform random variable  $U_1$  on [0,1]
- Find  $T_1$  such that  $\int_0^{T_1} \lambda(\theta) d\theta = -\log(U_1)$
- Simulate a uniform random variable  $U_2$  on [0,1], independent of  $U_1$
- Find  $T_2$  such that  $\int_{T_1}^{T_1+T_2} \lambda(\theta) d\theta = -\log(U_2)$

• etc.

# Definition of Point Poisson Processes (PPP)

- Let  $D \subset \mathbb{R}^{p}$  be the domain of the PPP N.
- Let  $\lambda$  be a nonnegative function defined on D, such that  $\int_D \lambda < \infty$ .
- A PPP N on D with intensity  $\lambda$  is a random set of points

$$N(\omega) = \{X_1(\omega), X_2(\omega), \cdots, X_{n(\omega)}(\omega)\}$$
  $X_k \in D,$ 

●  $\forall A \subset D$ , define  $N_A$  the number of points of N belonging in A, i.e.  $N_A = Card(N \cap A)$ .

$$N_A \stackrel{\mathcal{L}}{=} \mathcal{P}\left(\int_A \lambda\right)$$

 $\ \ \, {\it O} \ \ \, \forall A, \tilde{A} \subset D: \ A \cap \tilde{A} = \emptyset \Longrightarrow N_A \ \, {\it and} \ \, N_{\tilde{A}} \ \, {\it are \ independent}.$ 

A D N A B N A B N A

## Properties

- The number of points  $n(\omega)$  has a Poisson law of parameter  $\int_D \lambda$ .
- The number of points is finite if and only in  $\int_D \lambda < \infty$ .
- If *D̃* ⊂ *D*, the restriction to *D̃* of a PPP on *D* with intensity λ is a PPP on *D̃* with intensity λ.
- Assume  $D = \mathbb{R}^+ \times [0, K]$  and denote the coordinate of  $X_i(\omega) = (t_i, z_i)$ , with  $t_1 \leq t_2 \leq \cdots \leq t_n$ . If the intensity is constant,  $\lambda(t, z) \equiv \lambda$  then

$$t_{1} \stackrel{\mathcal{L}}{=} \mathcal{E}(K\lambda) \qquad z_{1} \stackrel{\mathcal{L}}{=} \mathcal{U}([0, K])$$
$$t_{k} - t_{k-1} \stackrel{\mathcal{L}}{=} \mathcal{E}(K\lambda) \qquad z_{k} \stackrel{\mathcal{L}}{=} \mathcal{U}([0, K])$$

 More generally, for any domain D, if the intensity is constant, conditionally on n, the points X<sub>1</sub>, ··· , X<sub>n</sub> are independent and uniformly distributed on D.

A very simple algorithm of simulation.

| Tanré (Inria |  |  |
|--------------|--|--|
|--------------|--|--|

イロト 不得 トイヨト イヨト 二日

# Simulation of a Poisson Process with time dependent intensity $\lambda(t)$

• We assume that the intensity is **bounded**.

$$\sup_{t\geq 0}\lambda(t)=K<\infty.$$

• Consider a PPP N on  $\mathbb{R}^+ \times [0, K]$  and define the hypograph  $D^{(\lambda)}$  of  $\lambda$ 

$$D^{(\lambda)}:=\{(t,z)\in \mathbb{R}^+ imes \mathbb{R}^+, z\leq \lambda(t)\}$$

• Define the restriction of N to  $D^{(\lambda)}$  and

$$\bar{N}(t) = \operatorname{Card}(N \cap D^{(\lambda)} \cap ([0, t] \times [0, K]))$$

•  $\bar{N}(t)$  is a Poisson Process with time dependent intensity  $\lambda$ .

A D N A B N A B N A