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Hodgkin-Huxley Model

CV̇ + INa + IK + IL = I,

with Ik := Gk(V − Ek) (intensity of the ionic current k for Na, K or L)

GL := ḡL

GK := ḡKn4

GNa := ḡNam3h.

The proportion of open channels satisfy

ṅ = αn(V )(1 − n) − βn(V )n
ṁ = αm(V )(1 − m) − βm(V )m
ḣ = αh(V )(1 − h) − βh(V )h.
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Motivation

What is really random?
Stochastic Models in general
Sources of noise in neuronal activities
Monte Carlo Methods
Efficiency
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Figure: From “Neuronal Noise”, Alain Destexhe and Michelle Rudolph-Lilith
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Noise in neuronal activity

Thermal noise
Channel noise
Electrical noise
Synaptic noise
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Two approaches: strong link between deterministic and
stochastic approaches

Toy example

A =
∫ 1

0
f (θ) dθ
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Ã =
∫∫∫

[0,1]3
f (θ1, θ2, θ3) dθ3dθ2dθ1 Ã = E [f (U1, U2, U3)]

Heat Equation and Brownian Motion
∂u
∂t (t, x) + 1

2
∂2

∂x2 u(t, x) = 0

u(T , x) = Ψ(x)

E. Tanré (Inria ) Mathematical Methods for Neurosciences November 2nd, 2023 8 / 46



Two approaches: strong link between deterministic and
stochastic approaches

Toy example

A =
∫ 1

0
f (θ) dθ A = E [f (U)]
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Strong Law of Large Numbers

Theorem (Law of Large Numbers)
Consider a random variable X, such that E (|X |) < ∞. We denote the mean
µ := E (X ). We consider a sample of n independent random variables X1, · · · , Xn
with the same law as X. Then

X1 + · · · + Xn
n

a.s.−→
n→∞

µ.
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Central Limit Theorem

Theorem
Consider a random variable X, such that E

(
|X |2

)
< ∞. Denote the mean and

variance by µ := E (X ), σ2 = E
[
(X − E(X ))2

]
= E(X 2) − (E(X ))2. Let us

consider a sample of n i.i.d random variables X1, · · · , Xn with the same law as X.
Then √

n
σ

(
X1 + · · · + Xn

n − µ

)
L−→

n→∞
N (0, 1).
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Confidence intervals

Assume µ = E(X ). An estimator of µ is

µ̂n := 1
n (X1 + · · · + Xn)

Assume n is large enough to be in the asymptotic regime.

P
[√

n
σ

(µ̂n − µ) ∈ A
]

≈ P (G ∈ A) where G ∼ N (0, 1)

∀α there exists yα such that P(|G | ≤ yα) = α

An example of the size of the confidence interval
For α = 95%, yα = 1.96.

P
(

µ ∈
[
µ̂n − 1.96σ√

n
, µ̂n + 1.96σ√

n

])
≥ 95%
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A non asymptotic estimate

Theorem (Berry-Esseen)
Let (Xi)i≥1 be a sequence of independent and identically distributed random
variables with zero mean. Denote by σ the common standard deviation. Suppose
that E|X |3 < +∞. Then

εN := sup
x∈R

∣∣∣∣P(X1 + · · · + XN

σ
√

N
≤ x

)
−
∫ x

−∞
e−u2/2 du√

2π

∣∣∣∣
≤ CE |X1|3

σ3
√

N
.

In addition, 0.398 ≤ C ≤ 0.8.

For a proof, see, e.g., Shiryayev (1984).
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A more precise result
We now give a result which is slightly more precise than the Berry-Esseen
Theorem: the estimate is non uniform in x . See Petrov (1975) for a proof and
extensions.

Theorem (Bikelis)
Let (Xi)i≥1 be a sequence of independent real random variables, which are not
necessarily identically distributed. Suppose that EXi = 0 for all i , and that there
exists 0 < δ ≤ 1 such that E|Xi |2+δ < +∞ for all i . Set

σ2
i := EX 2

i , BN :=
N∑

i=1
σ2

i , FN(x) := P

[∑N
i=1 Xi√
BN

≤ x
]

.

Denote by Φ the distribution function of a Gaussian law with zero mean and unit
variance. There exists a universal constant A in ( 1√

2π
, 1) independent of N and

of the sequence (Xi)i≥1, such that, for all x ,

|FN(x) − Φ(x)| ≤ A
B1+δ/2

N (1 + |x |)2+δ

N∑
i=1

E|Xi |2+δ
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Uniform Law
Generating a sequence U1, · · · , Un of i.i.d. uniform random variables
Properties

1
n

n∑
i=1

1a≤Ui ≤b ≈ b − a ∀a, b ∈ [0, 1]

1
n

n∑
i=1

(
U2i+1 − 1

2

)(
U2i+2 − 1

2

)
≈ 0

etc.

Congruencial generator
Nmax ∈ N
n0 ∈ N
nk+1 ≡ ank + b (mod) Nmax

uk = nk
Nmax
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Remarks
1 This sequence (uk)k≥1 mimics a sequence of independent random variable

uniformly distributed on (0, 1) but it is a deterministic sequence.
2 It allows us to compare several methods with the same random events
3 These sequences are periodic
4 We have to take care to the period: as long as possible.
5 A good choice: Mersenne Twister.

Do not forget
If you want to use a software or a given language in order to apply stochastic
numerical methods, you have to find its own uniform random generator or to
download a good uniform generator.
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Rejection Procedure

Principle
Our aim is to estimate E [FG ] with 0 ≤ G ≤ 1 almost surely.
The idea : write G = P̃(X )(= P(X |F , G))

E [FG ] = E [F1X ]
= E [F |X ]E [G ]
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Simulation of a random variable with a rejection procedure

Let X be a r.v. with density f . We do not know how to simulate it.
Let Y be a r.v. with density g . We know how to simulate it.

Assumption: ∀x ∈ R 0 ≤ f (x) ≤ Cg(x). We set h(x) := f (x)
Cg(x)1{g(x)>0}

E [φ(X )] =
∫

φ(x)f (x)dx =
∫

φ(x) f (x)
g(x)g(x)dx

= E
[
φ(Y ) f (Y )

g(Y )

]
= CE

[
φ(Y ) f (Y )

Cg(Y )

]
= CE [φ(Y )h(Y )]

= CE
[
φ(Y )1{U≤h(Y )}

]
= CE [φ(Y )|U < h(Y )]P [U ≤ h(Y )]
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P [U ≤ h(Y )] = E [h(Y )]

=
∫ f (y)

Cg(y)g(y)dy =
∫ f (y)

C dy

= 1
C

E [φ(X )] = CE [φ(Y )|U < h(Y )]P [U ≤ h(Y )]
= E [φ(Y )|U < h(Y )]
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Algorithm

1 Generate Y
2 Compute for this realisation f (Y )

Cg(Y )
3 Generate a random variable U, indep. of Y , with uniform law on (0, 1).

4 If U ≤ f (Y )
Cg(Y ) , accept the realisation, that is X = Y

5 Else (if U >
f (Y )

Cg(Y ) ), reject the realisation and start again from first step.

Remark
You have to wait a random time to obtain each realisation
The probability of acceptance is equal to 1

C .

Smaller is C , better is the algorithm.
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Low discrepancy Sequences

Using sequences of points more regular than random points may sometimes
improve Monte Carlo methods. We look for deterministic sequences (xi , i ≥ 1)
such that ∫

[0,1]d
f (x)dx ≈ 1

n (f (x1) + · · · + f (xn))

for all function f in a large enough set.

Definition
These methods with deterministic sequences are called quasi Monte Carlo
methods.

One can find sequences such that the speed of convergence of the previous

approximation is of order K log(n)d

n
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Low discrepancy Sequences (2)

Definition (Uniformly distributed sequences)
For all y , z ∈ [0, 1]d , we say that y ≤ z if ∀i = 1, .., d ,y i ≤ z i .
A sequence (x1, i ≥ 1) is said to be uniformly distributed on [0, 1]d if one of the
following equivalent properties is fulfilled:

1 For all y = (y1, · · · , yd) ∈ [0, 1]d , lim
n→+∞

1
n

n∑
k=1

1xk ∈[0,y ] = Volume([0, y ])

2 Let D∗
n (x) = sup

y∈[0,1]d

∣∣∣∣∣1n
n∑

k=1
1xk ∈[0,y ] − Volume([0, y ])

∣∣∣∣∣ be the discrepancy of

the sequence, then
lim

n→∞
D∗

n (x) = 0

3 For every (bounded) continuous function f on [0, 1]d

lim
n→+∞

1
n

n∑
k=1

f (xk) =
∫

[0,1]d
f (x)dx
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Low discrepancy Sequences(3)
Remark
If (Un)n≥1 is a sequence of independent random variables with uniform law on
[0, 1], the random sequence

(Un(ω), n ≥ 1)

is almost surely uniformly distributed.
The discrepancy fulfills an iterated logarithm law

lim sup
n

√
2n

log(log n)D∗
n (U) = 1 a.s.

Lower bound for the discrepancy: Roth Theorem
The discrepancy of any infinite sequence satisfies the property

D∗
n > Cd

(log n) d−1
2

n for d ≥ 3

for an infinite number of values of n, where Cd is a constant which depends on d
only.
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Low discrepancy Sequences (4)

Koksma-Hlawka inequality
Let g be a finite variation function in the sense of Hardy and Krause and denote
by V (g) its variation. Then, for n ≥ 1,∣∣∣∣∣ 1

N

N∑
k=1

g(xk) −
∫

[0,1]d
g(u)du

∣∣∣∣∣ ≤ V (g)D∗
N(x)

Finite variation function in the sense of Hardy and Krause
If the function g is d times continuously differentiable, the variation V (g) is given
by

d∑
k=1

∑
1≤i1<..<ik ≤d

∫{
x ∈ [0, 1]d

xj = 1 for j ̸= i1, .., ik

∣∣∣∣ ∂kg(x)
∂xi1 · · · ∂xik

∣∣∣∣ dxi1 · · · dxik
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Popular Quasi Monte Carlo Sequences
1 Faure sequences
2 Halton sequences
3 Sobol sequences
4 van der Corput sequences

An upper bound
For such sequences, we obtain an upper bound of the discrepancy:

D∗
n ≤ C (log n)d

n

Remark
For small d : deterministic methods
For moderated d : Quasi Monte Carlo methods
For large d : Monte Carlo methods
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Low discrepancy Sequences

Figure: Halton Points Figure: (Pseudo) uniform points
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Remind on Poisson laws

Definition (Poisson law)
The random variable Y has Poisson law of parameter λ if and only if

Y ∈ N almost surely.

P(Y = k) = exp(−λ)λk

k! .

Property
Let Y ∼ P(λ) and Z ∼ P(β) be two independent Poisson random variables.

Λ := Y + Z ∼ P(λ + β)
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Remind on Poisson laws

Proof.

P(Λ = k) =
k∑

i=0
P(Y = i , Z = k − i)

=
k∑

i=0
P(Y = i)P(Z = k − i)

=
k∑

i=0
exp(−λ)λi

i! exp(−β) βk−i

(k − i)!

= exp(−(λ + β))
k!

k∑
i=0

(
k
i

)
λiβk−i

= exp(−(λ + β)) (λ + β)k

k! .
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Rarefaction Poisson

Notation
let Y be a Poisson random variable with parameter λ

let (ξi , i ≥ 1) a sequence of i.i.d. random variables, independent of Y , which
take values in a countable set I

P(ξ1 = i) = pi .

For any i ∈ I, we introduce

Y (i) =
Y∑

j=1
1{ξj =i}

Conclusion
The random variables Y (1), · · · , Y (i), · · · are independent with Poisson laws of
parameters λpi .
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Counting Processes

Definition
A counting process (N(t), t ≥ 0) is a stochastic process

N(0) = 0 almost surely
N is almost surely non-decreasing
t 7→ N(t) is almost surely cadlag
N is piecewise constant and has jump of size 1.

Remark
A counting process is used to model the number of times that a particular
phenomenon has been observed by time t (typical example in neuroscience is the
number of spikes emitted by a neuron).
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Poisson Process

Definition
A counting process is a Poisson process if it satisfies the following conditions:

1 Numbers of observations in disjoint time intervals are independent random
variables, i.e.,if t0 < t1 < · · · < tm, then N(tk) − N(tk−1), k = 1, · · · , m are
independent random variables.

2 The distribution of N(t + a) − N(t) does not depend on t.

Theorem
If N is a Poisson process, then there is a constant λ > 0 such that, for s < t,
N(t) − N(s) is Poisson distributed with parameter λ(t − s), i.e

P(N(t) − N(s) = k) = (λ(t − s))k

k! exp(−λ(t − s)).
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Proof
Step 1
For any n ≥ 1, we write pn = P (N((k + 1)/n) − N(k/n) ≥ 1) .

P(N(1) = 0) = (1 − pn)n

λ = − log(P(N(1) = 0))
= −n log(1 − pn)
= lim

n
npn. ⇒ P(N(1) = 0) = exp(−λ)

Step 2 Let denote qn = P (N(1/n) ≥ 2). Denote Γn the number of intervals
[k/n, (k + 1)/n] containing at least 2 arrivals.

For Γn(ω) →n 0 for almost all ω (the time arrival are different).
Γn ≤ N(1)
We have E(N(1)) < ∞(admitted)
So, we conclude E(Γn) →n 0 (Fubini), that is nqn tends to 0.

Step 3
We deduce that limn nP(N(1/n) = 1) = limn nP(N(1/n) ≥ 1) = λ.
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P(N(1) = 1) =
(

n
1

)
pn(1 − pn)n−1

≈ nλ

n (1 − λ

n )n−1

≈ λ exp(−λ)

The end of the proof is similar to the next one.
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Construction of Poisson Processes
A non-decreasing random walk
Consider the random walk Sn:

S0 = 0, Sk+1 = Sk + Xk+1,

where X1, · · · , Xk , · · · are i.i.d. random variables

P(Xk = 1) = p = 1 − P(Xk = 0).

Let λ > 0 and t1 < t2 < · · · < tℓ and consider sequences, p(n), n1(n), · · · , nℓ(n)
such that

lim
n

np(n) = λ and ∀i ∈ 1, · · · , ℓ, lim
n

ni(n)
n = ti ,

Result
(Sni (n) − Sni−1(n), 1 ≤ i ≤ ℓ) L=⇒

n→∞
(Y1, Y2, · · · , Yℓ)

where Yi are independent r.v. with Poisson laws of parameters λ(ti − ti−1).
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Proof.

P(Sn1(n) = k) =
(

n1(n)
k

)
p(n)k(1 − p(n))n1(n)−k

≈ (t1n)!
k!(t1n − k)!

(
λ

n

)k (
1 − λ

n

)t1n−k

Remind

(Stirling) n! ≈
√

2πn
(n

e

)n
, lim

n

(
1 + u

n

)n
= exp(u).

P(Sn1(n) = k) ≈
√

2πt1n√
2π(t1n − k)

(
t1n
e

)t1n ( e
t1n − k

)t1n−k 1
nk

λk

k! exp(−λt1)

≈ exp(−λt1) (λt1)k

k! e−k
(

1 + k
t1n − k

)t1n
≈ exp(−λt1) (λt1)k

k! .

E. Tanré (Inria ) Mathematical Methods for Neurosciences November 2nd, 2023 38 / 46



A dual approach

Let N be a Poisson process.
We define Sk the time of the kth observation, that is N(Sk−) = k − 1 and
N(Sk) = k.
We have

{N(t) ≥ k} = {Sk ≤ t}

The c.d.f of Sk is

P(Sk ≤ t) = 1 −
k−1∑
i=0

exp(−λt) (λt)i

i!

The p.d.f of Sk is

d
dt P(Sk ≤ t) = 1

(k − 1)!λ(λt)k−1 exp(−λt).
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Distribution of the inter-events interval
Let N be a Poisson process.
We define Sk the time of the kth observation, that is N(Sk−) = k − 1 and
N(Sk) = k.
We denote Tk = Sk − Sk−1.

Proposition
The random times (Tk , k ≥ 1) are i.i.d. with exponential law of parameter λ.

Proof.
We have already proved the result for k = 1.
Let us prove for (T1, T2)

P(T1 > t, T2 > s) = P(N(t) < 1, N(T1 + s) < 2)
= P(N(t) = 0, N(T1 + s) − N(T1) = 0)
= P(N(t) = 0)P(N(T1 + s) − N(T1) = 0)
= exp(−λt) exp(−λs)
= P(T1 > t)P(T2 > s).
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Poisson process with time dependent intensity

Definition
Let (λ(t), t ≥ 0) be a deterministic function.
The process (N(t), t ≥ 0) is a Poisson process with intensity λ if

1 N(0) = 0 a.s.
2 N is a.s. a non decreasing cadlag process
3 N is a.s. piecewise constant with jumps of size 1
4 For any Borel set A, we consider the number of jumps of N in A, i.e.

N(A) =
∑
s∈A

1{N(s)−N(s−)=1}

then
N(A) ∼ P

(∫
A

λ(s)ds
)

.

5 If A1, · · · , Aℓ are Borel set such that Ai ∩ Aj = ∅ if i ̸= j, then
N(A1), · · · , N(Aℓ) are independent.
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Dual approach

Let N be a Poisson process on R+ with non-negative intensity (λ(t), t ≥ 0).
Denote by (Sk , k ≥ 1) the (random) jump times of N:

N(t) =



0 if 0 ≤ t < S1

1 if S1 ≤ t < S2

2 if S2 ≤ t < S3

· · ·
k if Sk ≤ t < Sk+1

Denote (Tk , k ≥ 1) the inter-arrival times:

Tk = Sk − Sk−1.

P(Tk ≥ t|Sk−1) = exp
(

−
∫ Sk−1+t

Sk−1

λ(θ)dθ

)
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Simulation of T1, · · · , Tk , · · ·
Inversion of the cumulative distribution function

FT1(t) := P(T1 ≤ t) = 1 − exp
(

−
∫ t

0
λ(θ)dθ

)
The time T1 is given by∫ T1

0
λ(θ)dθ ∼ − log(1 − U) ∼ − log(U)

=⇒ Compute the antiderivative of λ !

Algorithm
Simulate a uniform random variable U1 on [0, 1]
Find T1 such that

∫ T1
0 λ(θ)dθ = − log(U1)

Simulate a uniform random variable U2 on [0, 1], independent of U1

Find T2 such that
∫ T1+T2

T1
λ(θ)dθ = − log(U2)

etc.
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Definition of Point Poisson Processes (PPP)

Let D ⊂ Rp be the domain of the PPP N.
Let λ be a nonnegative function defined on D, such that

∫
D λ < ∞.

A PPP N on D with intensity λ is a random set of points

N(ω) = {X1(ω), X2(ω), · · · , Xn(ω)(ω)} Xk ∈ D,

1 ∀A ⊂ D, define NA the number of points of N belonging in A, i.e.
NA = Card(N ∩ A).

NA
L= P

(∫
A

λ

)
2 ∀A, Ã ⊂ D: A ∩ Ã = ∅ =⇒ NA and NÃ are independent.
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Properties

The number of points n(ω) has a Poisson law of parameter
∫

D λ.
The number of points is finite if and only in

∫
D λ < ∞.

If D̃ ⊂ D, the restriction to D̃ of a PPP on D with intensity λ is a PPP on D̃
with intensity λ.
Assume D = R+ × [0, K ] and denote the coordinate of Xi(ω) = (ti , zi), with
t1 ≤ t2 ≤ · · · ≤ tn. If the intensity is constant, λ(t, z) ≡ λ then

t1
L= E(Kλ) z1

L= U([0, K ])

tk − tk−1
L= E(Kλ) zk

L= U([0, K ])

More generally, for any domain D, if the intensity is constant, conditionally
on n, the points X1, · · · , Xn are independent and uniformly distributed on D.

A very simple algorithm of simulation.
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Simulation of a Poisson Process with time dependent
intensity λ(t)

We assume that the intensity is bounded.

sup
t≥0

λ(t) = K < ∞.

Consider a PPP N on R+ × [0, K ] and define the hypograph D(λ) of λ

D(λ) := {(t, z) ∈ R+ × R+, z ≤ λ(t)}

Define the restriction of N to D(λ) and

N̄(t) = Card(N ∩ D(λ) ∩ ([0, t] × [0, K ]))

N̄(t) is a Poisson Process with time dependent intensity λ.
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