LECTURE 2

Romain Veltz / Etienne Tanré October 26th, 2023

REMINDERS FROM LECTURE 1

This is not a general result but it is good to have this "recipe" in mind to check the results.

Checkboard!!

Fold bifurcation

Assume *F* is scalar C^k , $k \ge 2$ in a neighborhood of (0, 0), and that it satisfies

$$F(0,0)=0, \ \frac{\partial}{\partial u}F(0,0)=0$$

and

$$\frac{\partial}{\partial \mu}F(0,0):=a\neq 0, \frac{\partial^2}{\partial^2 u}F(0,0):=2b\neq 0.$$

Then, a saddle-node bifurcation occurs at $\mu = 0$. More precisely, in a neighbourhood of 0 in \mathbb{R} for sufficiently small μ :

- if ab < 0 (resp. ab > 0) the ODE has 2 equilibria $u_{\pm}(\epsilon), \epsilon = \sqrt{\mu}$ for $\mu > 0$ (resp., for $\mu < 0$), with opposite stabilities. Furthermore, the map $\epsilon \to u_{\pm}(\epsilon)$ is of class C^{k-2} in a neighbourhood of 0, and $u_{\pm}(\epsilon) = O(\epsilon)$.
- if ab < 0 (resp. ab > 0) the ODE has no equilibria for $\mu < 0$ (resp., for $\mu > 0$).

Hopf bifurcation

Assume F is C^k , $k \ge 5$ from $\mathcal{N}((0,0)) \in \mathbb{R}^n \times \mathbb{R}$ into \mathbb{R}^n , and that

 $F(0,0) = 0, L := \partial_{u}F(0,0) = 0.$

Assume that two eigenvalues *L* are $\pm i\omega$ for some $\omega > 0$, all other being away from $i\mathbb{R}$. Then there is a *2d invariant manifold* onto which the ODE is conjugated to

$$\mathbb{C} \ni \dot{A} = (\mu \cdot a + i\omega)A + b|A|^2A + O((|\mu| + |A|^2)^2)$$

with $\Re a, \Re b \neq 0$. Then, **a Hopf bifurcation** occurs at $\mu = 0$. More precisely, in a neighbourhood of 0 in \mathbb{R}^n for sufficiently small μ :

- if $\Re a \Re b < 0$ (resp. ab > 0) the ODE has precisely one equilibrium $u(\mu)$ for $\mu < 0$ (resp., for $\mu > 0$), with u(0) = 0. This equilibrium is stable when $\Re b < 0$ and unstable when $\Re b > 0$.
- if $\Re a \Re b < 0$ (resp. $\Re a \Re b > 0$) the ODE possesses for $\mu > 0$ (resp., for $\mu < 0$) an equilibrium $u(\mu)$ and a unique periodic orbit $u^*(\mu) = O(\sqrt{|\mu|})$, which surrounds this equilibrium. The periodic orbit 5 is stable when $\Re b < 0$ and unstable when $\Re b > 0$ whereas the

CENTER MANIFOLD

Consider u_{eq} equilibrium for $\dot{u} = F(u; \alpha)$ at parameter value α_0 , $F(u_{eq}; \alpha_0) = 0$. Write $u = u_{eq} + x$ and $\alpha = \alpha_0 + \mu$. It solves an equation like:

$$\dot{x} = \mathbf{L}x + \mathbf{R}(x;\mu), \ \mathbf{L} \in \mathcal{L}(\mathbb{R}^n), \ \mathbf{R} \in C^k(\mathcal{V}_x \times \mathcal{V}_\mu, \mathbb{R}^n), \ k \ge 2$$
 (1)

R(0;0) = 0, dR(0;0) = 0

Theorem 1/2

Write $\mathbb{R}^n = \mathcal{X}_c \oplus \mathcal{X}_h$ where $\mathcal{X}_h = \mathcal{X}_s \oplus \mathcal{X}_u$ and dim $\mathcal{X}_c > 0$. Then, there is a neighborhood $\mathcal{O} = \mathcal{O}_x \times \mathcal{O}_\mu$ of (0,0) in $\mathbb{R}^n \times \mathbb{R}^m$, a mapping $\Psi \in C^k(\mathcal{X}_c \times \mathbb{R}^m; \mathcal{X}_h)$ with

$$\Psi(0;0) = 0, \ d_1\Psi(0;0) = 0$$

and a manifold $\mathcal{M}(\mu) = \{u_c + \Psi(u_c, \mu), u_c \in \mathcal{X}_c\}$ for $\mu \in \mathcal{V}_{\mu}$ such that:

1 $\mathcal{M}(\mu)$ is **locally invariant**, i.e., $x(0) \in \mathcal{M}(\mu) \cap \mathcal{O}_x$ and $x(t) \in \mathcal{O}_x$ for all $t \in [0, T]$ implies $x(t) \in \mathcal{M}(\mu)$ for all $t \in [0, T]$.

Theorem 2/2

- 2 $\mathcal{M}(\mu)$ contains the set of **bounded solutions** of (1) staying in \mathcal{O}_x for all $t \in \mathbb{R}$, i.e. if *x* is a solution of (1) satisfying for all $t \in \mathbb{R}$, $x(t) \in \mathcal{O}_x$, then $x(0) \in \mathcal{M}(\mu)$.
- 3 (Parabolic case) if $n_+ = 0$, then $\mathcal{M}(\mu)$ is **locally attracting**, *i.e.* if x is a solution of (1) with $x(0) \in \mathcal{O}_x$ and $x(t) \in \mathcal{O}_x$ for all t > 0, then there exists $v(0) \in \mathcal{M}(\mu) \cap \mathcal{O}_c$ and $\tilde{\gamma} > 0$ such that

$$x(t) = v(t) + O(e^{-\tilde{\gamma}t})$$
 as $t \to \infty$

where v is a solution of (1) with initial condition v(0).

CENTER MANIFOLD

9

CENTER MANIFOLD: ADDITIONAL PROPERTIES

- The Center manifold is not unique. Uniqueness can be achieved if R is Lipschitzian with sufficiently small Lipschitz constant.
- If $x_c(0) \in \mathcal{M}(\mu)$, then

$$\dot{x}_c = \mathsf{L}_c x_c + \mathsf{P}_c \mathsf{R}(x_c + \Psi(x_c, \mu), \mu) \equiv f(x_c, \mu)$$

where P_c is the projector on \mathcal{X}_c .

The local coordinates function satisfies

 $d\Psi(x_c,\mu) \cdot f(x_c) = P_h \mathsf{L} \cdot \Psi(x_c,\mu) + P_h \mathsf{R}(x_c + \Psi(x_c,\mu))$

- There are extensions for non-autonomous systems, with symmetries...
- Extensions to Banach spaces possible in some cases
- Taylor expansion of Ψ is uniquely determined.

APPLICATION TO NEUROSCIENCES

GOAL OF THIS LECTURE: EXCITABILITY

 \Rightarrow Have a geometric understanding of excitability

This is a 2-dimensional simplification of the Hodgkin-Huxley model where we assume

- a leak current
- a persistent Na-current with instantaneous kinetics
- a persistent K-current with slower kinetics

$$C\frac{dV}{dt} = I - \underbrace{\overline{\tilde{g}_{K}n(V - E_{K})}}_{l_{K}} - \underbrace{\overline{\tilde{g}_{Na}m_{\infty}(V)(V - E_{Na})}}_{T(V)} - g_{L}(V - E_{L}) \equiv I(V)$$

where

$$(m,n)_{\infty} = \frac{1}{1 + exp[(V_{1/2} - V)/k]}$$

I-V curves in the $l_{Na,p} + \overline{l_K}$ model

Transitions to tonic spiking: by which mechanism?

Last 2 are in-vitro recordings

CODIM 1 BIFURCATIONS OF EQUILIBRIA

OUTLINE

- 1) Reminders from lecture 1
- 2) Center manifold
- 3 Application to Neurosciences
 - Codim 1 bifurcations of equilibria
 - Around the Saddle-Node bifurcation
 - Around the Hopf bifurcation
- 5 Excitability
 - Summary

Transitions from resting to spiking.

NEURAL PROPERTIES OF BIFURCATIONS

Quasi-static change in I, bifurcations?

Bifurcation of an equilibrium	Fast subthreshold oscillations	Amplitude of spikes	Frequency of spikes
saddle-node	no	nonzero	nonzero
saddle-node on invariant circle	no	nonzero	$A\sqrt{I-I_{\rm b}} \to 0$
supercritical Andronov-Hopf	yes	$A\sqrt{I\!-\!I_{\rm b}} \to 0$	nonzero
subcritical Andronov-Hopf	yes	nonzero	nonzero

Figures from Izhikevitch, $I_{Na,p} + I_K$ model

SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at $I_p = 4.51, (V_p, n_p) = (-61, 0.0007)$
- \cdot We can compute the center manifold

\Rightarrow Useful to understand when SN occurs and codim 2 bifuractions

SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at $I_p = 4.51, (V_p, n_p) = (-61, 0.0007)$
- We can compute the center manifold
- we check that

$$a = \frac{1}{2} \partial_V^2 f(V_p, I_p) \neq 0$$
 $c = \partial_I f(V_p, I_p) \neq 0$

\Rightarrow Useful to understand when SN occurs and codim 2 bifuractions

SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at $I_p = 4.51, (V_p, n_p) = (-61, 0.0007)$
- We can compute the center manifold
- we check that

$$a = \frac{1}{2} \partial_V^2 f(V_p, I_p) \neq 0 \quad c = \partial_I f(V_p, I_p) \neq 0$$

• We have the "normal form"

$$\dot{V} = c(I - I_p) + a(V - V_p)^2 + \cdots \quad a = 0.1887, c = 1$$

\Rightarrow Useful to understand when SN occurs and codim 2 bifuractions

(Figures from Izhikevitch, $I_{Na,p} + I_K$ model with high threshold, $\tau(V) = 1$) Also called **Saddle-node homoclinic bifurcation**

SADDLE-NODE BIFURCATION ON INVARIANT CYCLE (SNIC) 2/2

(Saddle-node homoclinic bifurcation)

 \cdot Time from A to B

$$T_2 \approx \frac{\pi}{\sqrt{ac(l-l_p)}}$$

- Action potential duration $T_1 \approx 4.7 ms$
- Firing frequency $\omega = \frac{1000}{T_1 + T_2}$

 \Rightarrow Exercise with $\theta\text{-model}$ or SN normal form

SUPERCRITICAL ANDRONOV-HOPF BIFURCATION 1/2

$I_{Na,p} + I_K$ model with low threshold

SUBCRITICAL ANDRONOV-HOPF BIFURCATION

BISTABILITY IN THE $I_{Na,p} + I_K$ model (To be explained later)

Delayed loss of stability (To be analyzed later (also)...)

EXCITABILITY

HODGKIN'S CLASSIFICATION, CLASS I (FIGURES FROM IZHIKEVICH)

- Action potentials can be generated with arbitrarily low frequency, depending on the strength of the applied current.
 - \Rightarrow encodes stim. strength

HODGKIN'S CLASSIFICATION: CLASS I

Transition of excitable systems to oscillatory ones. Period varies.

HODGKIN'S CLASSIFICATION, CLASS II (FIGURES FROM IZHIKEVICH)

- Action potentials are generated in a certain frequency band that is relatively insensitive to changes in the strength of the applied current.
 - \Rightarrow encodes threshold.

HODGKIN'S CLASSIFICATION: CLASS II

Period varies weakly.

HODGKIN'S CLASSIFICATION, CLASS III (FIGURES FROM IZHIKEVICH)

• L5 Pyramidal neuron in rat visual cortex. One spike is generated in response to a current step. Repetitive (tonic) spiking can be generated only for extremely strong injected currents or not at all.

HODGKIN'S CLASSIFICATION, CLASS III (FIGURES FROM IZHIKEVICH)

Class 3 neural excitability occurs when the resting state remains stable for any fixed I in a biophysically relevant range

Example of the Fitzhugh-Nagumo model $\dot{V} = V(a - V)(V - 1) - w + I$, $\dot{w} = bV - cw$, a = 0.1, b = 0.01

RAMPS, STEPS, AND SHOCKS

The $I_{Na,p} + I_K$ model, Class I or II?

Bistability equilibrium - periodic orbit.

- Class II for ramps, I for Steps
- subcr. AH at I = 5.25 for ramps
- Saddle homoclinic for $I \approx 3.89$ for steps
- near BT

Gray: attraction domain for resting state.

BISTABILITY

Excitatory / inhibitory pulses can shift the neuron from its resting state to repetitive firing.

INTEGRATORS VS. RESONATORS 1/2

Presence of sub-threshold oscillations

Exp. mechanism to test their presence

INTEGRATORS VS. RESONATORS 2/2

Integrators prefer high frequencies: detect coincidences.

Resonators are selective in a frequency band.

SELECTIVE RESPONSE: EXCITATION OR INHIBITION

Mesencephalic V neurons in brainstem having subthreshold membrane oscillations with a natural period around 9 ms. Three consecutive voltage traces are shown to demonstrate some variability of the result

SELECTIVE RESPONSE: EXCITATION OR INHIBITION

Experimental observations of selective response to inhibitory resonant burst in mesencephalic V neurons in brainstem having oscillatory potentials with the natural period around 9 ms. (Modified from Izhikevich et al. 2003).

SELECTIVE RESPONSE: EXCITATION OR INHIBITION, GEOMETRICAL EXPLANATION

Important temporal coherence of pulses.

INFLUENCE OF SYNAPTIC BOMBARDMENT, FROZEN NOISE EXPERIMENT

In vitro exp., sub-th. oscillations.

THRESHOLD DEFINITION: NOT OBVIOUS

FitzHugh (1955) noticed that **thresholds, if they exist, are never numbers but manifolds**, e.g., curves in two-dimensional systems.

- Integrators (close to saddle-node bifurcation) have a threshold manifolds, given by stable manifold of fold point.
- For resonators, it depends on bifurcation type
 - Bistable regime: (close to sub. AH): the unstable LC is a th. manifold.
 - In all other cases, there is no well defined th. manifold.

Threshold manifolds for the $I_{Na,p} + I_K$ model

4

SPIKE EMISSION: EXCITATION OR INHIBITION?

An integrator cannot spike in response to a hyper-polarizing current, a resonator can.

SPIKE EMISSION: EXCITATION OR INHIBITION?

An hyper-polarizing current (inhib.) can enhance the effect of subsequent excitatory pulses.

SPIKING BEHAVIOURS

LATENCY TO FIRST SPIKE (IN VITRO)

Property of integrators

Allow coding of input strengh in latency to first spike

Less sensitive to noise, since only prolonged inputs can cause spikes

LATENCY TO FIRST SPIKE

- Mitral cells can be switched from being integrators to being resonators by synaptic input.
- For resonators, it depends on bifurcation type

Multistability of equilibria.

INTEGRATOR \rightarrow RESONATOR 2/2

Gray: attraction domain for UP state.

Need to combine in 2d a SN with a AH:

In the $I_{Na,p} + I_K$ model (parameters $E_L, V_{1/2}$), the nullclines are parallel close to the left knee of the fast nullcline

A small change in the parameter $V_{1/2}$ can give a Saddle-Node: i.e. an integrator

BOGDANOV-TAKENS 3/3

or a resonator via a stable focus.

SUMMARY

 \Rightarrow How does this impact network dynamics, ongoing research

SUMMARY 2/2

properties	integrators		resonators	
bifurcation	saddle-node on invariant circle	saddle-node	subcritical Andronov-Hopf	supercritical Andronov-Hopf
excitability	class 1	class 2	class 2	class 2
oscillatory potentials	no		yes	
frequency preference	no		yes	
I-V relation at rest	non-monotone		monotone	
spike latency	large		small	
threshold and rheobase	well-defined		may not be defined	
all-or-none action potentials	yes		no	
co-existence of resting and spiking	no	yes	yes	no
post-inhibitory spike or facilitation (brief stimuli)	no		yes	
inhibition-induced spiking	no		possible	