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REMINDERS FROM LECTURE 1




PRINCIPLE OF EXCHANGE STABILITY

This is not a general result but it is good to have this “recipe” in mind
to check the results.

Checkboard!



Fold bifurcation
Assume Fis scalar C*, k > 2 in a neighborhood of (0, 0), and that it satisfies
0

F(0,0) =0, a—uF(O, 0)=0

and
iF(o 0):=a#0 a—zF(o 0):=2b#0
aﬂ ) T 782u ) T -
Then, a saddle-node bifurcation occurs at © = 0. More precisely, in a

neighbourhood of 0 in R for sufficiently small p:

- if ab < 0 (resp. ab > 0) the ODE has 2 equilibria u(e),e = \/z for >0
(resp., for < 0) , with opposite stabilities. Furthermore, the map
€ — U+ (€) is of class C*=2 in a neighbourhood of 0, and u(¢) = O(e).

- if ab < 0 (resp. ab > 0) the ODE has no equilibria for u < 0 (resp., for
p > 0).



Hopf bifurcation
Assume Fis C*, k > 5 from N((0,0)) € R” x R into R", and that

F(0,0) =0, L := 8,F(0,0) = 0.

Assume that two eigenvalues L are +iw for some w > 0, all other being
away from iR. Then there is a 2d invariant manifold onto which the ODE is
conjugated to

C3A=(u-a+iw)A+blAPA+O((lul + [AP)?)

with %a, Rb #£ 0. Then, a Hopf bifurcation occurs at ;. = 0. More precisely,
in a neighbourhood of 0 in R" for sufficiently small pu:

- if RaRb < 0 (resp. ab > 0) the ODE has precisely one equilibrium u(u)
for u < 0 (resp., for > 0), with u(0) = 0. This equilibrium is stable
when $tb < 0 and unstable when Rb > 0.

- if RaRb < 0 (resp. RaRb > 0) the ODE possesses for p > 0 (resp., for
p < 0) an equilibrium u(u) and a unique periodic orbit
u* (1) = O(+y/]pl), which surrounds this equilibrium. The periodic orbit 5
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CENTER MANIFOLD




CENTER MANIFOLD: THE CASE WHERE R\ =0

Consider ueq equilibrium for U = F(u; ) at parameter value ao,
F(Ueq; cvg) = 0. Write U = Ueq + x and a = o + p. It solves an equation like:

X=Lx+R(Xpu), LeLR"), Re Ve xV,,RM), k>2 (1)
R(0;0) = 0, dR(0;0) =0

Write R" = X & X}, where &), = Xs & A, and dim X, > 0. Then, there
is a neighborhood O = Oy x O, of (0,0) in R" x R™, a mapping ¥ €
CR(X: x R™; &) with

W(0;0) =0, d¥(0;0)=0

and a manifold M(u) = {uc + V(uc, p), uc € X} for p € V,, such that:

M(u) is locally invariant, i.e., x(0) € M(p) N Ox and x(t) € O for all
t € [0, T] implies x(t) € M(u) for all t € [0, T].



CENTER MANIFOLD

M(u) contains the set of bounded solutions of (1) staying in Oy
forallt € R, i.e. if x is a solution of (1) satisfying for all t € R,
X(t) € Oy, then x(0) € M(pu).

(Parabolic case) if n, = 0, then M(u) is locally attracting, i.e. if x
is a solution of (1) with x(0) € Ox and x(t) € O for all t > 0, then
there exists v(0) € M(u) N O and 4 > 0 such that

x(t) = v(t) + 0(e™ " as t — oo

where v is a solution of (1) with initial condition v(0).



CENTER MANIFOLD
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CENTER MANIFOLD: ADDITIONAL PROPERTIES

@ The Center manifold is not unique. Unigueness can be achieved
if Ris Lipschitzian with sufficiently small Lipschitz constant.
Q If x(0) € M(p), then
).(C — chc + P(_‘R(Xc + \U(Xc, M), I[L) = f(Xc, /J)

where P¢ is the projector on A..
© The local coordinates function satisfies

dW(xc, 1) - flxc) = PpL - W(xc, 1) + PpR(Xc + W (Xc, 1)

@ There are extensions for non-autonomous systems, with
symmetries...

@ Extensions to Banach spaces possible in some cases

Q@ Taylor expansion of W is uniquely determined.
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APPLICATION TO NEUROSCIENCES




GOAL OF THIS LECTURE: EXCITABILITY

(A) tonic spiking (B) phasic spiking (C) tonic bursting (D) phasic bursting
N, /J/V L— ,l‘/ VUL JW”JL/—
R — 5 = = r =
(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation
J‘ )

i I _ WA
= T = — - — -
i reshok v integrator

() spike latency ) subtrshold (K)resonato (L integrator
M | /
J - i~ Jn
. _— | = n LN | E—— ]
(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variabilty
[ P— -+ — — o~
— — s s
® © ™ innidi
aer-potontial Spiking bursting
AP
|7
A N L~ -/

S -
= T M s

= Have a geometric understanding of excitability -



REMINDER ON THE /yq p + /¢ MODEL

This is a 2-dimensional simplification of the Hodgkin-Huxley model
where we assume

- a leak current

- a persistent Na-current with instantaneous kinetics

- a persistent K-current with slower kinetics

Ik Ina

CY = |- Gen(V — Ex) — GrnaMoo(V)(V — Ena) —gu(V — E) = I(V)
dn _ Neo(V)—n
a — ~ (V)

where
1

~ Tt exp[(Vay, — V)/H]

(M, N)oo
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|-V CURVES IN THE Iyap + Ix MODEL

saddle-node bifurcation

rest state ')
/
0

no
equilibria

[ L

-100 -50
membrane voltage, V (mV)

Ik

Andnronov-Hopf bifurcation

/ (V)
rest state /
o \

N

new equilibrium

1=0
1>0
| | !
-100 -50 0
membrane voltage, V (mV)

C?T\t/ = I— ggn(V — Ex) — gnaMoo(V)(V — Eng) —91(V — E1) = I(V)



4 EXAMPLES OF CODIM 1 BIFURCATIONS (FIGURES FROM IZHIKEVICH)

Transitions to tonic spiking: by which mechanism?

saddle-node bifurcation supercritical Andronov-Hopf bifurcation

subcritical Andronov-Hopf bifurcation

saddle-node on invariant circle bifurcation | 20 mV

100 ms \
|20mv
100 ms \4 B0mv

=60mV. 60 pA

Last 2 are in-vitro recordings
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CoDIM 1 BIFURCATIONS OF EQUILIBRIA




OUTLINE

@ codim 1 bifurcations of equilibria

Transitions from resting to spiking.



NEURAL PROPERTIES OF BIFURCATIONS

Quasi-static change in I, bifurcations?

saddle-node bifurcation

\

1ms
saddle-node on invariant cirle biurcation sbcrical Aonowsipt b
‘Zﬂrrv
|2omv @ \
e copa|
Fast
Bifurcation of an equilibrium | subthreshold Amplitude Frequency
oscillations of spikes of spikes
saddle-node no nonzero nonzero
saddle-node on invariant circle no TNONZETO AVI-I, — 0
supercritical Andronov-Hopf yes AVI-I, — 0 nonzero
subcritical Andronov-Hopf yes nonzero nonzero
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Figures from Izhikevitch, Iygp + Ik model
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SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at I, = 4.51, (Vp, np) = (—61,0.0007)

- We can compute the center manifold

= Useful to understand when SN occurs and codim 2 bifuractions

20



SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at I, = 4.51, (Vp, np) = (—61,0.0007)
- We can compute the center manifold

- we check that

a= %agf(vp, ) #0 ¢c=df(Vp,lp) #0

= Useful to understand when SN occurs and codim 2 bifuractions
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SADDLE-NODE BIFURCATION 2/2

- the bifurcation occurs at I, = 4.51, (Vp, np) = (—61,0.0007)
- We can compute the center manifold

- we check that

1
a= iaﬁf(vp» Ip) #0 c=0f(Vp,lp) #0
- We have the “normal form”

V=c(l—Ip)+a(V—Vp)>+--- a=0.1887,c =1

= Useful to understand when SN occurs and codim 2 bifuractions
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SADDLE-NODE BIFURCATION ON INVARIANT CYCLE (SNIC) 1/2

(Figures from Izhikevitch, Ina,p + Ik model with high threshold,
(V) = 1) Also called Saddle-node homoclinic bifurcation

ra = —
v | slow K+ currente— o——7 < | =
@
NN = - £/
05 3
IR e - =
2
[N — Py
04f N — .
< M~ ~ -~ -
g <
EﬂfijA o < <
S~ > - -
c
§ ~ -~ o -
T
202 = ~ -
[ SO .
+
3

saddle-node
on invariant circle

L L L L L L
80 70 60 10 0 10 20

-50 -40 -30 -20
membrane voltage, V (mV)
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SADDLE-NODE BIFURCATION ON INVARIANT CYCLE (SNIC) 2/2

(Saddle-node homoclinic bifurcation)

- Time from A to B N
Ty~ ——Z— S Z
2 ac(i—1)
- Action potential \ |
duration Ty &~ 4.7ms : \ 7
- Firing frequency A\/ B
__ 1000 ®
YT T S T I B e

membrane voltage, V (mV)

= Exercise with #-model or SN normal form
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SUPERCRITICAL ANDRONOV-HOPF BIFURCATION 1

Y a2

supercritical Andronov-Hopt
bifurcation at 1=14.66

C eigenvalues oo
o o 0w w g e
injected DC curret, | z
go 1
g —r
8 0 40 2 0 2 stable unstable
membrane voltage, V (mV)
real part, o
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SUPERCRITICAL ANDRONOV-HOPF BIFURCATION 2/2

Ina,p + Ik model with low threshold

15 215)
. theoretical
S g meric;
E 5 2 nul al
= K
10 =
£ ' 815
S amplitude & frequency
o o
= B
s o 1
2° g
= 2
£ So.5
g
14.66 . = 14.66
0
0 10 20 30 0 10 20 30 0 10 20 30

injected dc-current, |

injected dc-current, |

injected dc-current, |

2%



SUBCRITICAL ANDRONOV-HOPF BIFURCATION

subcritical Andronov-Hopt
bifurcation at |=48.8

s

g0 j

§ -t
stable | unstable

S 40 20 0
membrang voltage, V (mV)
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BISTABILITY IN THE Iyg, + Ix MODEL (TO BE EXPLAINED LATER)

1
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stable equilibrium (rest)
0 s s s s s
-80 70 -60 -50 -40 -30 -20 -10 0 10

membrane voltage, V (mV) 26



DELAYED LOSS OF STABILITY (TO BE ANALYZED LATER (ALSO)...)

T T T T T T T T T
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< on rable limit ¢ cle -
— subcritical
Ky X Andronov-Hopf
& 20 by, bifurcation
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EXCITABILITY




HODGKIN'S CLASSIFICATION, CLASS | (FIGURES FROM IZHIKEVICH)

Layer 5 pyramidal cell T 40 F-1 curve
3
3 30 a
> -pfe o
WMU g o .ss"." =

= -

- 220 e

1=320 g 7
o Jo
S0 &
- -~

1=80 g s
>
>0 : :
© 0 100 200 300

injected dc-current, | (pA)
1=61

0
- Action potentials can be
=40 - generated with arbitrarily low
0 frequency, depending on the
strength of the applied
L pA) current.

100 ms |4o mV

1=2

0 pA .
= encodes stim. strength
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HODGKIN'S CLASSIFICATION: CLASS |

Transition of excitable systems to oscillatory ones. Period varies.

excitable bistable oscillatory

saddle-node on invariant
circle bifurcation

saddle-

node

bifurcation
_—

saddle-homoclinic
orbit bifurcation
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HODGKIN'S CLASSIFICATION, CLASS Il (FIGURES FROM IZHIKEVICH)

. 250 F-1 curve
Brainstem mesV cell

,=1QWMMMMW
|=G&W1JMMM ;
500 1000 1500
JJJWJ/\’—_——‘ injected dc-current, | (pA)
1=500 o .
- Action potentials are
H ~ 20ms |20 mv generated in a certain
1=400 .
frequency band that is

200 Y
B
ot

50

asymptotic firing frequency, Hz
o
o

o
o

=200 -~ relatively insensitive to
changes in the strength of the
| (pA) .
oon] applied current.

= encodes threshold. 3



HODGKIN'S CLASSIFICATION: CLASS Il

Period varies weakly.

supercritical Andronov-Hopf

\ bifurcation

&

- subcritical
fold limit cycle Andronov-
bifurcation Hopf

bifurcation
_—
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HODGKIN’S CLASSIFICATION, CLASS Il (FIGURES FROM |ZHIKEVICH)

120 mv
MO e 2omy

50ms 3mvV|

subthreshold osci\lalionsl

I L

—F

100 pA

- L5 Pyramidal neuron in rat visual cortex. One spike is generated
in response to a current step. Repetitive (tonic) spiking can be
generated only for extremely strong injected currents or not at all.
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HODGKIN'S CLASSIFICATION, CLASS Il (FIGURES FROM IZHIKEVICH)

Class 3 neural excitability occurs when the resting state remains
stable for any fixed | in a biophysically relevant range

\DLITY

0.25

0.2}

i
L ..
g

V-nullcline

w-nullcline

w
0.1

0.05

Soooo
Soooo
22888

it

0

04 02 0 02 04 06 08
\

Example of the Fitzhugh-Nagumo model
V=V@a@a-V)(V=1)—-w+I, w=bV—cw, a=0.1, b= 0.0
34



RAMPS, STEPS, AND SHOCKS

K+ gating variable, n

-70 -60 -50 -40 -70 -60 -50 -40  -70 -60 -50 -40
membrane potential, V (mV) membrane potential, V (mV) membrane potential, V (mV)
0
-20
-40 V(t)

slow ramp from Ig to |4 step from Ip to |4 shock pulse at 1
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THE Ina,p + Ix MODEL, CLASS | OR 11?

Bistability equilibrium - periodic orbit.

(a) frequency-current (F-I) relation (©

pulses —----
anp — "
; Andronov-Hopf
. homodlinic
L 4o homedinc |

388 525 current, |

' porica W/W\W - Class Il for ramps, | for Steps
] - subcr. AH at | = 5.25 for ramps

/‘J:

frequency

(d) 1=5.25 (e) 1=3.8866 d dl h l H f

e I - Saddle homoclinic for | =~ 3.89
Andronov-Hopf homoclinic orbit
bifurcation bifurcation

. .

g for steps

H H

H - near BT

& &

0.1 0.1 o—

-80  membrane potential, V (mV) O -80  membrane potential, V (mV) O

Gray: attraction domain for resting state.
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BISTABILITY

saddle-node bifurcation subcritical Andronov-Hopf bifurcation

excitatory
pulse

inhibitory

~/ inhibitory
pulse

_ QoL gttraction
0= % lomain

attraction n - of spikin
domain v | L limit cycle

Excitatory / inhibitory pulses can shift the neuron from its resting
state to repetitive firing.

37



INTEGRATORS VS. RESONATORS 1/2

(K) resonator (L) integrator

38



INTEGRATORS VS. RESONATORS 1/2

resonators
4omy [5MV

10 Hz T sec 140 Hz 200 Hz /\
opa 1200pA zap current, pA frequency of stimulation

@ Presence of sub-threshold oscillations

membrane potential response, mV

amplitude of the response

@ Exp. mechanism to test their presence
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INTEGRATORS VS. RESONATORS 2/2

-42 . -42 -42
integrators

= = s

E E E

: : «/\& : N\[
k=3 € k=

2 2 2

5] ] 5]

a a a

-52 5 ms -52 10ms -52 15nrns

0 10 20 30 0 10 20 30 0 10 20 30
time (ms) time (ms) time (ms)
42 -42 42
resonators

= = s

E E E

) = =

= T T

£ 2 8

S 5] S

a a8 a

-52 5 ms -52 10 ms -52 15 ms

n_n n n n_
0 10 20 30 0 10 20 30 0 10 20 30
time (ms) time (ms) time (ms)

Integrators prefer high frequencies: detect coincidences.

Resonators are selective in a frequency band.
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SELECTIVE RESPONSE: EXCITATION OR INHIBITION

A~ —ANAN A~

VJ/ AN

JULL LN L_n_n

5ms 10ms 15ms
non-resonant burst resonant burst non-resonant burst

Mesencephalic V neurons in brainstem having subthreshold
membrane oscillations with a natural period around 9 ms. Three
consecutive voltage traces are shown to demonstrate some variability
of the result
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SELECTIVE RESPONSE: EXCITATION OR INHIBITION
WW VIV le
VWA

W

inhibitory input

UL ruuuy ruruy
5ms 15ms 10ms
non-resonant burst non-resonant burst resonant burst

Experimental observations of selective response to inhibitory
resonant burst in mesencephalic V neurons in brainstem having
oscillatory potentials with the natural period around 9 ms. (Modified

from Izhikevich et al. 2003).
42



SELECTIVE RESPONSE: EXCITATION OR INHIBITION, GEOMETRICAL

EXPLANATION

excitatory pulses inhibitory pulses
spike

¢ W

Important temporal coherence of pulses.

Hodgkin-Huxley model

resonant

non-resonant
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INFLUENCE OF SYNAPTIC BOMBARDMENT, FROZEN NOISE EXPERIMENT

I R I N R B
0yl 3 Bt N AT S (F
o femli ol R Lk
@ am i LI RO R A

ol b1

o ] i B

(b)
> L
2 20,
53 Of
5€ 201
€8 o
60T
(@ =z
332007 frozen noise
2 [ [burstinput
£ o = : o : : : —
3 50 100 150 200 250 300 350 400 450 500

time (ms)

In vitro exp., sub-th. oscillations.
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THRESHOLD DEFINITION: NOT OBVIOUS

1ms

|1omv

threshold ?

squid axon

=

5ms 5ms
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THRESHOLD MANIFOLDS FOR THE Iyq, + /x MODEL

FitzHugh (1955) noticed that thresholds, if they exist, are never
numbers but manifolds, e.g., curves in two-dimensional systems.

- Integrators (close to saddle-node bifurcation) have a threshold
manifolds, given by stable manifold of fold point.
- For resonators, it depends on bifurcation type

- Bistable regime: (close to sub. AH): the unstable LC is a th.
manifold.
- In all other cases, there is no well defined th. manifold.
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THRESHOLD MANIFOLDS FOR THE Iyq, + /x MODEL

K+ activation

K* activation

o

(a) integrator

05

/
small ¢

L EPSP | &
- spike
02
60 50 -40 70 60 -50 -40

-60

-50 -40
membrane potential, mV

-30

1

0.8

06

0.4

0.2

(d) resonator

70 60 50 -40 -30 -20
membrane potential, mV




SPIKE EMISSION: EXCITATION OR INHIBITION?

(a) integrator (b) resonator

]
©
(=]
c
2
T
2
©
@©
4

X

inhibition
,,,,,, o f- —éx};}tation excitation
iThibilion
-60 -40 -20 -60 -40 -20
membrane potential, mV membrane potential, mV

An integrator cannot spike in response to a hyper-polarizing current,
a resonator can.
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SPIKE EMISSION: EXCITATION OR INHIBITION?

K* activation gate

inhibitory

] excitatory
ulse pulse
excitatory ] inhibitory

pulse pulse

-60 -40 -20
membrane potential, mV

An hyper-polarizing current (inhib.) can enhance the effect of
subsequent excitatory pulses.
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SPIKING BEHAVIOURS

(A) tonic spiking

]

(B) phasic spiking

(C) tonic bursting

W

VV‘/L

(D) phasic bursting

g

(E) mixed mode

JANS
T

(F) spia requency
atio

S
r

(G) Class 1 excitable

(H) Class 2 excitable

(J) subthreshold
(1) spike latency ) el (K) resonator (L) integrator
\ !
~ A V/
S — - R —
(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variabillty
A ‘UM
A— — —/ I~
—_-— v = e L L=
(Q) dep R) (S) m it
aftor-potential J/ epiking bursting
-
e = UL
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LATENCY TO FIRST SPIKE (IN VITRO)

|20 mV

50 ms

-75 mV Il

20 pA

Property of integrators
Allow coding of input strengh in latency to first spike
Less sensitive to noise, since only prolonged inputs can cause spikes

51



L
22
o
(%2]
-
(%3]
o
(T
o
|
>
o
=2
=
<<
—

Andronov-Hopf bifurcation

saddle-node bifurcation

S
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-40 -30

-60 -50
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-60 -50 -40

membrane potential, mV

-70

membrane potential, mV
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FLIPPING FROM AN INTEGRATOR TO A RESONATOR

- Mitral cells can be switched from being integrators to being
resonators by synaptic input.

- For resonators, it depends on bifurcation type
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INTEGRATOR — RESONATOR 1/2

__J1omv _|20mV

100 ms 200 ms
oscillations

\

resonator
60 mv ™ Rt up-state ""_..-ﬁ""""'*“ e Y _ﬂ_.--*"
60m S F /
—_— e e down-state L’ P —
E integrator ) !
U ]

Multistability of equilibria.
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INTEGRATOR — RESONATOR 2/2

)up-state

,,,,,,,,,,,,,,,,,,,, = (focus)

down-state
(node)

Gray: attraction domain for UP state.
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BT COMING INTO PLAY?

Need to combine in 2d a SN with a AH:

integrator 9 resonator
(saddle-node bifurcation) = (Andronov-Hopf bifurcation)
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BOGDANOV-TAKENS 1/3

In the Ingp + Ik model (parameters E, V1/2), the nullclines are parallel
close to the left knee of the fast nullcline

o/
£
0.5 2 v,
< g %, c
o) </ < N
w 0.4 / % o
° / S
S 03 / <
© / =1
2 Y g
g 0.2 g
; i t
0.1 / V2
7
0 == 0
-60 -40 -20 0 65 -60 -55 -50
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BOGDANOV-TAKENS 2/3

A small change in the parameter V;/, can give a Saddle-Node: i.e. an
integrator

K+ activation gate, n
K* activation gate, n

-65 -60 -55 -50
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BOGDANOV-TAKENS 3/3

or a resonator via a stable focus.

0.6

5
§ /
L %
OC; 0.5 lg, /)(///
g £ %,
> 0.4 / %
c /
S !
T 03 /
g ,
[ /
Iy 0.2 y
e /
0.1
0 —
-60 -40 -20 0

membrane potential, V (mV)

K* activation gate, n

-65 -60 -55
membrane potential, V (mV)

-50
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SUMMARY




SUMMARY 1/2

coexistence of resting and spiking states

YES

Andronov-Hopf Andronov-Hopf

YES NO
(bistable) (monostable)
(2}
c o
S o
© © saddle-node on
= % S | saddle-node — -
S “e invariant circle
] =
s =
2 =
- " "
D ok subcritical supercritical
= o
7%
o =

= How does this impact network dynamics, ongoing research
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SUMMARY 2/2

spiking

properties integrators resonators

. . saddle-node on subcritical supercritical
bifurcation invariant circle saddle-node Andronov-Hopf Andronov-Hopf
excitability class 1 class 2 class 2 class 2
oscillatory
potentials no yes
frequency
preference no yes
gt\/rézllatlon non-monotone monotone
spike latency large small
?r:gsrnglgbase well-defined may not be defined
all-or-none
action potentials YES) [
co-existence of
resting and spiking no yes yes no
post-inhibitory spike
or facilitation no yes
(brief stimuli)
inhibition-induced no possible
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