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REMINDERS FROM LECTURE 1



PRINCIPLE OF EXCHANGE STABILITY

This is not a general result but it is good to have this “recipe” in mind
to check the results.

Checkboard!!
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Fold bifurcation
Assume F is scalar Ck, k ≥ 2 in a neighborhood of (0, 0), and that it satisfies

F(0, 0) = 0, ∂

∂uF(0, 0) = 0

and
∂

∂µ
F(0, 0) := a ̸= 0, ∂2

∂2uF(0, 0) := 2b ̸= 0.

Then, a saddle-node bifurcation occurs at µ = 0. More precisely, in a
neighbourhood of 0 in R for sufficiently small µ:

• if ab < 0 (resp. ab > 0) the ODE has 2 equilibria u±(ϵ), ϵ =
√
µ for µ > 0

(resp., for µ < 0) , with opposite stabilities. Furthermore, the map
ϵ → u±(ϵ) is of class Ck−2 in a neighbourhood of 0, and u±(ϵ) = O(ϵ).

• if ab < 0 (resp. ab > 0) the ODE has no equilibria for µ < 0 (resp., for
µ > 0).
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Hopf bifurcation
Assume F is Ck, k ≥ 5 from N ((0, 0)) ∈ Rn × R into Rn, and that

F(0, 0) = 0, L := ∂uF(0, 0) = 0.

Assume that two eigenvalues L are ±iω for some ω > 0, all other being
away from iR. Then there is a 2d invariant manifold onto which the ODE is
conjugated to

C ∋ Ȧ = (µ · a+ iω)A+ b|A|2A+ O((|µ|+ |A|2)2)

with ℜa,ℜb ̸= 0. Then, a Hopf bifurcation occurs at µ = 0. More precisely,
in a neighbourhood of 0 in Rn for sufficiently small µ:

• if ℜaℜb < 0 (resp. ab > 0) the ODE has precisely one equilibrium u(µ)
for µ < 0 (resp., for µ > 0), with u(0) = 0. This equilibrium is stable
when ℜb < 0 and unstable when ℜb > 0.

• if ℜaℜb < 0 (resp. ℜaℜb > 0) the ODE possesses for µ > 0 (resp., for
µ < 0) an equilibrium u(µ) and a unique periodic orbit
u∗(µ) = O(

√
|µ|), which surrounds this equilibrium. The periodic orbit

is stable when ℜb < 0 and unstable when ℜb > 0, whereas the
equilibrium has opposite stability.
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CENTER MANIFOLD



CENTER MANIFOLD: THE CASE WHERE ℜλ = 0

Consider ueq equilibrium for u̇ = F(u;α) at parameter value α0,
F(ueq;α0) = 0. Write u = ueq + x and α = α0 + µ. It solves an equation like:

ẋ = Lx+ R(x;µ), L ∈ L(Rn), R ∈ Ck(Vx × Vµ,Rn), k ≥ 2 (1)

R(0; 0) = 0, dR(0; 0) = 0

Theorem 1/2
Write Rn = Xc ⊕ Xh where Xh = Xs ⊕ Xu and dimXc > 0. Then, there
is a neighborhood O = Ox × Oµ of (0, 0) in Rn × Rm, a mapping Ψ ∈
Ck(Xc × Rm;Xh) with

Ψ(0; 0) = 0, d1Ψ(0; 0) = 0

and a manifoldM(µ) = {uc +Ψ(uc, µ),uc ∈ Xc} for µ ∈ Vµ such that:

1 M(µ) is locally invariant, i.e., x(0) ∈ M(µ) ∩ Ox and x(t) ∈ Ox for all
t ∈ [0, T] implies x(t) ∈ M(µ) for all t ∈ [0, T].
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CENTER MANIFOLD

Theorem 2/2
2 M(µ) contains the set of bounded solutions of (1) staying in Ox
for all t ∈ R, i.e. if x is a solution of (1) satisfying for all t ∈ R,
x(t) ∈ Ox, then x(0) ∈ M(µ).

3 (Parabolic case) if n+ = 0, thenM(µ) is locally attracting, i.e. if x
is a solution of (1) with x(0) ∈ Ox and x(t) ∈ Ox for all t > 0, then
there exists v(0) ∈ M(µ) ∩ Oc and γ̃ > 0 such that

x(t) = v(t) + O(e−γ̃t) as t→ ∞

where v is a solution of (1) with initial condition v(0).
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CENTER MANIFOLD

5.1 Center manifold theorems 153
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FIGURE 5.3. Two-dimensional center manifold at the Hopf bifurcation.

Remarks:
(1) The second statement of the theorem means that orbits staying near

the equilibrium for t ≥ 0 or t ≤ 0 tend to W c in the corresponding time
direction. If we know a priori that all orbits starting in U remain in this
region forever (a necessary condition for this is n+ = 0), then the theorem
implies that these orbits approach W c(0) as t → +∞. In this case the
manifold is “attracting.”

(2) W c need not be unique. The system
{

ẋ = x2,
ẏ = −y,

has an equilibrium (x, y) = (0, 0) with λ1 = 0,λ2 = −1 (a fold case). It
possesses a family of one-dimensional center manifolds:

W c
β(0) = {(x, y) : y = ψβ(x)},
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CENTER MANIFOLD: ADDITIONAL PROPERTIES

1 The Center manifold is not unique. Uniqueness can be achieved
if R is Lipschitzian with sufficiently small Lipschitz constant.

2 If xc(0) ∈ M(µ), then

ẋc = Lcxc + PcR(xc +Ψ(xc, µ), µ) ≡ f(xc, µ)

where Pc is the projector on Xc.
3 The local coordinates function satisfies

dΨ(xc, µ) · f(xc) = PhL ·Ψ(xc, µ) + PhR(xc +Ψ(xc, µ))

4 There are extensions for non-autonomous systems, with
symmetries...

5 Extensions to Banach spaces possible in some cases
6 Taylor expansion of Ψ is uniquely determined.

10



APPLICATION TO NEUROSCIENCES



GOAL OF THIS LECTURE: EXCITABILITY

⇒ Have a geometric understanding of excitability
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REMINDER ON THE INa,p + IK MODEL

This is a 2-dimensional simplification of the Hodgkin-Huxley model
where we assume

• a leak current
• a persistent Na-current with instantaneous kinetics
• a persistent K-current with slower kinetics

CdVdt = I−
IK︷ ︸︸ ︷

ḡKn(V− EK) −
INa︷ ︸︸ ︷

ḡNam∞(V)(V− ENa) −gL(V− EL) ≡ I(V)
dn
dt =

n∞(V)−n
τ(V)

where
(m,n)∞ =

1
1+ exp[(V1/2 − V)/k]
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I-V CURVES IN THE INa,p + IK MODEL
162 Bifurcations
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Figure 6.3: Steady-state I-V curves of the INa,p+IK-model with high-threshold (left)
and low-threshold (right) K+ current (parameters as in Fig.4.1).

6.1.1 Saddle-Node (Fold)

We provided the definition of a saddle-node bifurcation in one-dimensional systems
in section 3.3.4, and the reader is encouraged to look at that section and at Fig.4.31
before proceeding further.

A k-dimensional dynamical system

ẋ = f(x, b) , x ∈ Rk

having an equilibrium point xsn for some value of the bifurcation parameter bsn (i.e.,
f(xsn, bsn) = 0) exhibits saddle-node (also known as fold) bifurcation if the equilibrium
is non-hyperbolic with a simple zero eigenvalue, the function f is non-degenerate, and
it is transversal with respect to b. The first condition is easy to check:

• Non-hyperbolicity. The Jacobian k×k matrix of partial derivatives at the equilib-
rium (see section 4.2.2) has exactly one zero eigenvalue, and the other eigenvalues
have nonzero real parts.

In general, the remaining two conditions have complicated forms, since they involve
projections of the vector field on the center manifold, which is tangent to the eigenvector
corresponding to the zero eigenvalue of the Jacobian matrix. However, there is a
shortcut for conductance-based neuronal models.

Let I(V, b) denote the steady-state I-V relation, which can be measured experimen-
tally, divided by the membrane capacitance C. For example, I(V, I) = {I − I∞(V )}/C
when the injected DC current I is used as a bifurcation parameter. We replace the
multi-dimensional neuronal model with the one-dimensional system V̇ = I(V, b). From
I(V, b) = 0 (equilibrium condition) we find b = I∞(V ). Non-hyperbolicity implies
IV (V, b) = 0, so that the bifurcation occurs at the local maxima and minima of I∞(V ).
We considered all these properties in chapter 3.

CdVdt = I−
IK︷ ︸︸ ︷

ḡKn(V− EK) −
INa︷ ︸︸ ︷

ḡNam∞(V)(V− ENa) −gL(V− EL) ≡ I(V)
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4 EXAMPLES OF CODIM 1 BIFURCATIONS (FIGURES FROM IZHIKEVICH)

Transitions to tonic spiking: by which mechanism?
160 Bifurcations
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Figure 6.1: Transitions from resting to tonic (periodic) spiking occur via bifurcations of
equilibrium (marked by arrows). Saddle-node on invariant circle bifurcation: in vitro
recording of pyramidal neuron of rat’s primary visual cortex. Subcritical Andronov-
Hopf bifurcation: in vitro recording of brainstem mesencephalic V neuron. The other
two traces are simulations of the INa,p+IK-model.
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Figure 6.1: Transitions from resting to tonic (periodic) spiking occur via bifurcations of
equilibrium (marked by arrows). Saddle-node on invariant circle bifurcation: in vitro
recording of pyramidal neuron of rat’s primary visual cortex. Subcritical Andronov-
Hopf bifurcation: in vitro recording of brainstem mesencephalic V neuron. The other
two traces are simulations of the INa,p+IK-model.

Last 2 are in-vitro recordings
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CODIM 1 BIFURCATIONS OF EQUILIBRIA



OUTLINE

1 Reminders from lecture 1

2 Center manifold

3 Application to Neurosciences

4 Codim 1 bifurcations of equilibria

Around the Saddle-Node bifurcation

Around the Hopf bifurcation

5 Excitability

6 Summary

Transitions from resting to spiking.
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NEURAL PROPERTIES OF BIFURCATIONS

Quasi-static change in I, bifurcations?160 Bifurcations
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Figure 6.1: Transitions from resting to tonic (periodic) spiking occur via bifurcations of
equilibrium (marked by arrows). Saddle-node on invariant circle bifurcation: in vitro
recording of pyramidal neuron of rat’s primary visual cortex. Subcritical Andronov-
Hopf bifurcation: in vitro recording of brainstem mesencephalic V neuron. The other
two traces are simulations of the INa,p+IK-model.

160 Bifurcations

saddle-node bifurcation

saddle-node on invariant circle bifurcation

supercritical Andronov-Hopf bifurcation

subcritical Andronov-Hopf bifurcation

1 ms

100 ms

5 ms

20 mV

-60 mV 60 pA

20 mV

2 nA

100 ms

-60 mV

Figure 6.1: Transitions from resting to tonic (periodic) spiking occur via bifurcations of
equilibrium (marked by arrows). Saddle-node on invariant circle bifurcation: in vitro
recording of pyramidal neuron of rat’s primary visual cortex. Subcritical Andronov-
Hopf bifurcation: in vitro recording of brainstem mesencephalic V neuron. The other
two traces are simulations of the INa,p+IK-model.

Bifurcations 161

Fast
Bifurcation of an equilibrium subthreshold Amplitude Frequency

oscillations of spikes of spikes

saddle-node no nonzero nonzero

saddle-node on invariant circle no nonzero A
√

I−Ib → 0

supercritical Andronov-Hopf yes A
√

I−Ib → 0 nonzero

subcritical Andronov-Hopf yes nonzero nonzero

Figure 6.2: Summary of codimension-1 bifurcations of an equilibrium. I denotes the
amplitude of the injected current, Ib is the bifurcation value, and A is a parameter
that depends on the biophysical details.

Thus, there are only two qualitative events that can happen with a stable equilibrium
in a dynamical system of arbitrary dimension: it can either disappear or lose stability.
Of course, there could also be a third event: all eigenvalues continue to have negative
real parts, in which case the equilibrium remains stable.

Since any equilibrium of a neuronal model is the zero of the steady-state I-V curve
I∞(V ) (the net current at the equilibrium must be zero), analysis of the shape of the
I-V curve can provide invaluable information about possible bifurcations of the resting
state.

Two typical steady-state I-V curves are depicted in Fig.6.3. The I-V curve in
Fig.6.3a has a region with a negative slope and thus may have three equilibria: the
left equilibrium is probably stable (though it might be unstable; see exercise 8), the
middle is unstable, and the right equilibrium can be stable or unstable, depending on
the kinetics of the gating variables (it is stable in the one-dimensional case, i.e., when
gating variables have instantaneous kinetics). The I-V curve in Fig.6.3b is monotone.
A positive (inward) injected DC current I shifts the I-V curves down. This leads to the
disappearance of the equilibrium in Fig.6.3a, but not in Fig.6.3b. Therefore, Fig.6.3a
corresponds to the saddle-node bifurcation and Fig.6.3b to the Andronov-Hopf bifur-
cation. Exactly when the equilibrium loses stability in Fig.6.3b cannot be inferred
from the I-V relations (for this, we need to consider the full neuronal model). But
what we can infer is that the bifurcation cannot be of the saddle-node type. Surpris-
ingly, nonmonotonic I-V curves result in saddle-node bifurcations but do not exclude
Andronov-Hopf bifurcations, as the reader is asked to demonstrate in exercise 8. This
phenomenon is relevant to the cortical pyramidal neurons considered in chapter 8.
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SADDLE-NODE BIFURCATION 1/2

Figures from Izhikevitch, INa,p + IK model

Bifurcations 165

saddle-nodenode saddle
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(b)   saddle-node on invariant circle (SNIC) bifurcation

(a)   saddle-node bifurcation

Figure 6.6: Two types of saddle-node bifurcation.

originating and terminating at the same point. When the point disappears, the circle
becomes a limit cycle.

Both types of the bifurcation can occur in the INa,p+IK-model, as we show in
Fig.6.7. The difference between the top and the bottom of the figure is the time
constant τ(V ) of the K+ current. Since the K+ current has a high threshold, the
time constant does not affect dynamics at rest, but it makes a huge difference when
an action potential is generated. If the current is fast (top), it activates during the
upstroke, thereby decreasing the amplitude of the action potential, and deactivates
during the downstroke, thereby resulting in overshoot and another action potential.
In contrast, the slower K+ current (bottom) does not have time to deactivate during
the downstroke, thereby resulting in undershoot (short afterhyperpolarization), with
V going below the resting state.

From the geometrical point of view, the phase portraits in Fig.6.6b and in Fig.6.7
(bottom), have the same topological structure: there is a homoclinic trajectory (an
invariant circle) that originates at the saddle-node point, leaves its small neighborhood
(to fire an action potential), then reenters the neighborhood, and terminates at the
saddle-node point. This homoclinic trajectory is a limit cycle attractor with infinite
period, which corresponds to firing with zero frequency. This and other neurocompu-
tational features of saddle-node bifurcations are discussed in the next chapter. Below,
we only explore how the frequency of oscillation depends on the bifurcation parameter,
e.g., on the injected DC current I.
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Figure 6.7: Saddle-node bifurcation in the INa,p+IK-model with a high-threshold K+

current can be off the limit cycle (top) or on the invariant circle (bottom). Parameters
are as in Fig.4.1a with τ(V ) = 0.152 (top) or τ(V ) = 1 (bottom).
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SADDLE-NODE BIFURCATION 2/2

• the bifurcation occurs at Ip = 4.51, (Vp,np) = (−61, 0.0007)
• We can compute the center manifold

• we check that

a =
1
2∂

2
Vf(Vp, Ip) ̸= 0 c = ∂If(Vp, Ip) ̸= 0

• We have the “normal form”

V̇ = c(I− Ip) + a(V− Vp)2 + · · · a = 0.1887, c = 1

⇒ Useful to understand when SN occurs and codim 2 bifuractions
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SADDLE-NODE BIFURCATION ON INVARIANT CYCLE (SNIC) 1/2

(Figures from Izhikevitch, INa,p + IK model with high threshold,
τ(V) = 1) Also called Saddle-node homoclinic bifurcationBifurcations 165
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Figure 6.6: Two types of saddle-node bifurcation.

originating and terminating at the same point. When the point disappears, the circle
becomes a limit cycle.

Both types of the bifurcation can occur in the INa,p+IK-model, as we show in
Fig.6.7. The difference between the top and the bottom of the figure is the time
constant τ(V ) of the K+ current. Since the K+ current has a high threshold, the
time constant does not affect dynamics at rest, but it makes a huge difference when
an action potential is generated. If the current is fast (top), it activates during the
upstroke, thereby decreasing the amplitude of the action potential, and deactivates
during the downstroke, thereby resulting in overshoot and another action potential.
In contrast, the slower K+ current (bottom) does not have time to deactivate during
the downstroke, thereby resulting in undershoot (short afterhyperpolarization), with
V going below the resting state.

From the geometrical point of view, the phase portraits in Fig.6.6b and in Fig.6.7
(bottom), have the same topological structure: there is a homoclinic trajectory (an
invariant circle) that originates at the saddle-node point, leaves its small neighborhood
(to fire an action potential), then reenters the neighborhood, and terminates at the
saddle-node point. This homoclinic trajectory is a limit cycle attractor with infinite
period, which corresponds to firing with zero frequency. This and other neurocompu-
tational features of saddle-node bifurcations are discussed in the next chapter. Below,
we only explore how the frequency of oscillation depends on the bifurcation parameter,
e.g., on the injected DC current I.

166 Bifurcations

K
+  

ac
tiv

at
io

n 
va

ria
bl

e,
 n

V-nullcline

n-
nu

llc
lin

e

0

0.1

0.2

0.3

0.4

0.5

0.6

saddle-node

membrane voltage, V (mV)

K
+  

ac
tiv

at
io

n 
va

ria
bl

e,
 n

V-
nu

llc
lin

e

n-
nu

llc
lin

e

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20

0

0.1

0.2

0.3

0.4

0.5

0.6

invariant circle

saddle-node 
on invariant circle

slow K+ current

fast K+ current

Figure 6.7: Saddle-node bifurcation in the INa,p+IK-model with a high-threshold K+

current can be off the limit cycle (top) or on the invariant circle (bottom). Parameters
are as in Fig.4.1a with τ(V ) = 0.152 (top) or τ(V ) = 1 (bottom).
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SADDLE-NODE BIFURCATION ON INVARIANT CYCLE (SNIC) 2/2

(Saddle-node homoclinic bifurcation)

• Time from A to B
T2 ≈ π√

ac(I−Ip)

• Action potential
duration T1 ≈ 4.7ms

• Firing frequency
ω = 1000

T1+T2

Bifurcations 167
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Figure 6.8: The INa,p+IK-model can fire a periodic train of action potentials with
arbitrary small frequency when it is near a saddle-node on invariant circle bifurcation.
The trajectory moves fast from point B to A (a spike) and slowly in the shaded region
from point A to B.

⇒ Exercise with θ-model or SN normal form
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SUPERCRITICAL ANDRONOV-HOPF BIFURCATION 1/2

Bifurcations 171
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Figure 6.11: Supercritical Andronov-Hopf bifurcation in the INa,p+IK-model with low-
threshold K+ current: As the bifurcation parameter I increases, the equilibrium loses
stability and gives birth to a stable limit cycle with growing amplitude. Parameters
are as in Fig.4.1b.
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Figure 6.11: Supercritical Andronov-Hopf bifurcation in the INa,p+IK-model with low-
threshold K+ current: As the bifurcation parameter I increases, the equilibrium loses
stability and gives birth to a stable limit cycle with growing amplitude. Parameters
are as in Fig.4.1b.
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SUPERCRITICAL ANDRONOV-HOPF BIFURCATION 2/2

INa,p + IK model with low threshold172 Bifurcations
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Figure 6.12: Supercritical Andronov-Hopf bifurcation in the INa,p+IK-model with low-
threshold K+ current (see Fig.6.11). Dots represent numerical simulation of the full
model, continuous curves represent analytical results using the topological normal form
(6.8, 6.9).

Example: The INa,p+IK-Model

Let us use the INa,p+IK-model with low-threshold K+ current in Fig.6.11 to illustrate
the three conditions above. As the magnitude of the injected DC current I increases,
the equilibrium loses stability and gives birth to a stable limit cycle with growing
amplitude. Using simulations we find that the bifurcation occurs when Iah = 14.66
and (Vah, nah) = (−56.5, 0.09). The Jacobian matrix at the equilibrium,

L =

(
1 −335

0.0166 −1

)
,

has a pair of complex conjugate eigenvalues ±2.14i, so the non-hyperbolicity condition
is satisfied. Next, we find numerically (in Fig.6.12 or analytically in exercise 9) that
the eigenvalues at the equilibrium can be approximated by

c(I) + ω(I)i ≈ 0.03{I − 14.66} ± (2.14 + 0.04{I − 14.66})i

in a neighborhood of the bifurcation point I = 14.66. Since the slope of c(I) is nonzero,
the transversality condition is also satisfied. Using exercise 17 we find that a = −0.0026
and d = −0.0029, so that the non-degeneracy condition is also satisfied, and the
bifurcation is of the supercritical type. The corresponding topological normal form is

ṙ = 0.03{I − 14.66}r − 0.0026r3,

ϕ̇ = (2.14 + 0.04{I − 14.66}) − 0.0029r2.

To analyze the normal form, we consider the r-equation and neglect the phase variable
ϕ. From

r(c(b) + ar2) = 0
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SUBCRITICAL ANDRONOV-HOPF BIFURCATION
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Figure 6.16: Subcritical Andronov-Hopf bifurcation in the INa,p+IK-model. As the bi-
furcation parameter I increases, an unstable limit cycle (dashed circle; see also Fig.6.14)
shrinks to an equilibrium and makes it lose stability. Parameters are as in Fig.4.1b,
except gL = 1, gNa = gK = 4, and the Na+ activation function has V1/2 = −30 mV and
k = 7.
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Figure 6.16: Subcritical Andronov-Hopf bifurcation in the INa,p+IK-model. As the bi-
furcation parameter I increases, an unstable limit cycle (dashed circle; see also Fig.6.14)
shrinks to an equilibrium and makes it lose stability. Parameters are as in Fig.4.1b,
except gL = 1, gNa = gK = 4, and the Na+ activation function has V1/2 = −30 mV and
k = 7.
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BISTABILITY IN THE INa,p + IK MODEL (TO BE EXPLAINED LATER)174 Bifurcations

-80 -70 -60 -50 -40 -30 -20 -10 0 10
0

0.5

1

membrane voltage, V (mV)

K
+  

ac
tiv

at
io

n 
va

ria
bl

e,
 n

st
ab

le
lim

it cyc
le

un
sta

ble
limit cycle

V-nullcline

n-
nu

llc
lin

e

stable equilibrium (rest)

Figure 6.14: Phase portrait of
the INa,p+IK-model: An unstable
limit cycle (dashed circle) is
often surrounded by a stable one
(solid circle) in two-dimensional
neuronal models.

depicted in Fig.6.12. We see that the topological normal form describes the full
INa,p+IK-model near the Andronov-Hopf bifurcation not only qualitatively but also
quantitatively.

6.1.4 Subcritical Andronov-Hopf

Neuronal models with monotonic steady-state I-V relations can often exhibit subcritical
Andronov-Hopf bifurcations, as we illustrate in Fig.6.16, using the INa,p+IK-model hav-
ing a low-threshold K+ current and a steep activation curve for the Na+ current. The
stable equilibrium in such a system is surrounded by an unstable limit cycle (dashed
circle), which is often surrounded by another stable cycle, as in Fig.6.14 (not depicted
in Fig.6.16 for clarity). As the magnitude of the injected DC current I increases, the
unstable cycle shrinks to the stable equilibrium and makes it lose stability. Systems
undergoing such a bifurcation satisfy the same three conditions – non-hyperbolicity,
non-degeneracy, and transversality – presented in the previous section, and they can
be reduced to the topological normal form (6.8, 6.9) with positive a.

Analysis of the normal form shows that the stability of the non-oscillatory equilib-
rium r = 0 depends on the sign of c(b):

• When c(b) < 0 (see Fig.6.15, left), there is a pair of equilibria, r = ±
√

|c(b)|/a
corresponding to an unstable periodic solution that shrinks to r = 0 as c(b) → 0
and makes the stable equilibrium r = 0 lose its stability.

• When c(b) > 0 (see Fig.6.15, right), the non-oscillatory state r = 0 is unstable,
and all trajectories diverge from it.

This behavior can be clearly seen in Fig.6.16.
Finally, note that there is always a bistability (co-existence) of the resting attrac-

tor and some other attractor near a subcritical Andronov-Hopf bifurcation in two-
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DELAYED LOSS OF STABILITY (TO BE ANALYZED LATER (ALSO)...)
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Figure 6.17: Delayed loss of stability (a) and noise-induced sustained oscillations (b)
near subcritical Andronov-Hopf bifurcation. Shown are simulations of the INa,p+IK-
model with parameters as in Fig.6.16 and the same initial conditions. Small conduc-
tance noise is added in (b) to unmask oscillations.

Unmasking of Oscillations by Noise

In Fig.6.17b we repeat the same simulation as in Fig.6.17a except that we add a weak
conductance noise to the INa,p+IK-model. Starting with the same initial conditions,
the system converges to the stable focus equilibrium, as expected, exhibiting damped
oscillations of membrane potential. After a while, however, it diverges from the equi-
librium and exhibits sustained waxing and waning oscillations, as if there were a small
amplitude limit cycle attractor with a variable amplitude. The oscillations persist until
the state of the system escapes from the attraction domain of the stable focus, which
is bounded by the unstable limit cycle, to the attraction domain of the large-amplitude
stable limit cycle.

27



EXCITABILITY



HODGKIN’S CLASSIFICATION, CLASS I (FIGURES FROM IZHIKEVICH)Excitability 219
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Figure 7.3: Top: Typical responses of membrane potentials of two neurons to steps of
DC current of various magnitudes I. Bottom: Corresponding frequency-current (F-I)
relations are qualitatively different. Shown are recordings of layer 5 pyramidal neurons
from rat primary visual cortex (left) and mesV neuron from rat brainstem (right). The
asymptotic frequency is 1000/T∞, where T∞ is taken to be the interval between the
last two spikes in a long spike train.
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Figure 7.3: Top: Typical responses of membrane potentials of two neurons to steps of
DC current of various magnitudes I. Bottom: Corresponding frequency-current (F-I)
relations are qualitatively different. Shown are recordings of layer 5 pyramidal neurons
from rat primary visual cortex (left) and mesV neuron from rat brainstem (right). The
asymptotic frequency is 1000/T∞, where T∞ is taken to be the interval between the
last two spikes in a long spike train.

• Action potentials can be
generated with arbitrarily low
frequency, depending on the
strength of the applied
current.
⇒ encodes stim. strength
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HODGKIN’S CLASSIFICATION: CLASS I

Transition of excitable systems to oscillatory ones. Period varies.Excitability 217
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Figure 7.2: Excitable dynamical systems bifurcate into oscillatory ones either directly
or indirectly, via bistable systems.
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HODGKIN’S CLASSIFICATION, CLASS II (FIGURES FROM IZHIKEVICH)
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Figure 7.3: Top: Typical responses of membrane potentials of two neurons to steps of
DC current of various magnitudes I. Bottom: Corresponding frequency-current (F-I)
relations are qualitatively different. Shown are recordings of layer 5 pyramidal neurons
from rat primary visual cortex (left) and mesV neuron from rat brainstem (right). The
asymptotic frequency is 1000/T∞, where T∞ is taken to be the interval between the
last two spikes in a long spike train.
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Figure 7.3: Top: Typical responses of membrane potentials of two neurons to steps of
DC current of various magnitudes I. Bottom: Corresponding frequency-current (F-I)
relations are qualitatively different. Shown are recordings of layer 5 pyramidal neurons
from rat primary visual cortex (left) and mesV neuron from rat brainstem (right). The
asymptotic frequency is 1000/T∞, where T∞ is taken to be the interval between the
last two spikes in a long spike train.

• Action potentials are
generated in a certain
frequency band that is
relatively insensitive to
changes in the strength of the
applied current.
⇒ encodes threshold. 31



HODGKIN’S CLASSIFICATION: CLASS II

Period varies weakly.
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Figure 7.2: Excitable dynamical systems bifurcate into oscillatory ones either directly
or indirectly, via bistable systems.
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HODGKIN’S CLASSIFICATION, CLASS III (FIGURES FROM IZHIKEVICH)

220 Excitability
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Figure 7.4: Class 3 excitability of a mesV neuron of rat brainstem (contrast with
Fig.7.3).

700 pA
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-20mV
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subthreshold oscillations

Figure 7.5: Class 3 excitability of a layer 5 pyramidal neuron of rat visual cortex. The
inset shows subthreshold oscillations of membrane potential.

Instead, they can act as threshold elements reporting when the strength of an input is
above a certain value. Both properties are important in neural computations.

Hodgkin also observed that axons left in oil or seawater for long periods exhibited

• Class 3 neural excitability. A single action potential is generated in response to a
pulse of current. Repetitive (tonic) spiking can be generated only for extremely
strong injected currents or not at all.

Two examples of Class 3 excitable systems are depicted in Fig.7.4 and Fig.7.5. The
mesV neuron in the figure fires a phasic spike at the onset of the pulse of current, and
then remains quiescent. Even injecting pulses as high as 1000 pA, which result in spike
trains in another mesV neuron in Fig.7.3, cannot evoke multiple spikes in this neuron.
Similarly, the pyramidal neuron in Fig.7.5 cannot sustain tonic spiking even when the

• L5 Pyramidal neuron in rat visual cortex. One spike is generated
in response to a current step. Repetitive (tonic) spiking can be
generated only for extremely strong injected currents or not at all.
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HODGKIN’S CLASSIFICATION, CLASS III (FIGURES FROM IZHIKEVICH)

Class 3 neural excitability occurs when the resting state remains
stable for any fixed I in a biophysically relevant range

Excitability 223
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Figure 7.8: Class 3 excitability in FitzHugh-Nagumo model (4.11, 4.12) with a =
0.1, b = 0.01, c = 0. The model fires a single spike for any pulse of current.

to the slow ramp. In contrast, a quick membrane depolarization due to a strong step
of current does not give enough time for Na+ inactivation, thereby resulting in a spike.
During the spike, the current inactivates quickly and precludes any further action po-
tentials. Instead of inactivating the Na+ current, we could have used a low-threshold
persistent K+ current, or any other resonant current, to illustrate the phenomenon of
accommodation.

From the dynamical systems point of view, slow ramp results in quasi-static dy-
namics so that all gating variables follow their steady-state values, x = x∞(V ), and the
membrane potential follows its I-V curve. As long as the equilibrium corresponding to
the resting state is stable, the neuron is at rest. Even global bifurcations resulting in
the appearance of stable limit cycles do not change that. Only when the equilibrium
bifurcates (loses stability or disappears), does the neuron change its behavior, e.g.,
jumps to a limit cycle attractor and starts to fire spikes. Class 3 excitable systems do
not fire in response to slow ramps because the resting state does not bifurcate.

In contrast, a pulse of current changes the phase portrait in a rather abrupt man-
ner, as we illustrate in Fig.7.8, using the FitzHugh-Nagumo model with vertical slow
nullcline. Injecting I shifts the fast nullcline upward. Though no bifurcation can occur
in the model, and the resting state is stable for any value of I, its location suddenly
shifts when I jumps. The trajectory from the old equilibrium, (0, 0), to the new one
goes through the right branch of the cubic V -nullcline, thereby resulting in a single
spike. Since the new equilibrium (0, 0.03) is a global attractor and no limit cycles
exist, periodic spiking cannot be generated. In exercise 7 we explore the relationship
between Class 3 excitability and Andronov-Hopf bifurcation (note the subthreshold
oscillations of membrane potential of the pyramidal neuron in Fig.7.5). We see that
injecting ramps of current is not equivalent to injecting pulses of current. The system
goes through a bifurcation of the equilibrium in the former, but may bypass it and
jump somewhere else in the latter.

Example of the Fitzhugh-Nagumo model
V̇ = V(a− V)(V− 1)− w+ I, ẇ = bV− cw, a = 0.1, b = 0.01
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RAMPS, STEPS, AND SHOCKS224 Excitability
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Figure 7.9: The difference between ramp, step, and shock stimulations is in the resetting
of initial condition.

7.1.5 Ramps, Steps, and Shocks

In Fig.7.9 we elaborate the differences among injecting slow ramps, steps, and shocks
(i.e., brief pulses) of current. In the first two cases the magnitude of the injected
current changes from I0 to I1, while in the third case the current is I1 except for the
infinitesimally brief moment when it has an infinitely large strength. In all three cases
the dynamics of the model can be understood via analysis of its phase portrait at
I = I1. The key difference among the stimulation protocols is how they reset the
initial condition.

At the beginning of the slow ramp in Fig.7.9a, the state of the neuron is at the
stable equilibrium. As the current slowly increases, the equilibrium slowly moves, and
the trajectory follows it. When the current reaches I = I1, the trajectory is at the new
equilibrium, so no response is evoked because the equilibrium is stable. In contrast,
when the current is stepped from I0 to I1 in Fig.7.9b, the location of the equilibrium
changes instantaneously, but the membrane potential and the gating variables do not
have time to catch up. To understand the response of the model to the step, we need
to consider its dynamics at I = I1 with the initial condition set to the location of
the old equilibrium (marked by the white square in the figure). Such a step evokes a
spike response even though the new equilibrium is stable. Finally, shocking the neuron
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THE INa,p + IK MODEL, CLASS I OR II?
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Figure 7.10: The INa,p+IK-model undergoes subcritical Andronov-Hopf bifurcation, yet
can exhibit low-frequency firing when pulses (but not ramps) of current are injected.
Parameters: C = 1, I = 0, EL = −66.2, gL = 2, gNa = 5, gK = 4.5, m∞(V ) has
V1/2 = −30 and k = 10, n∞(V ) has V1/2 = −34 and k = 13, and τ(V ) = 1, ENa = 60
mV and EK = −90 mV. The shaded region is the attraction domain of the resting
state. The inset shows a distorted drawing of the phase portrait.

results in an instantaneous increase of its membrane potential to a new value. (As an
exercise, prove that the magnitude of the increase equals the product of pulse width and
pulse height divided by the membrane capacitance.) This shifts the initial condition
horizontally to a new point, marked by the white square in Fig.7.9c, and results in a
spike response.

Now, let us revisit the Hodgkin experiments and demonstrate the fundamental
difference between the stimulation protocols. In Fig.7.10a, b, and c we simulate the
INa,p+IK-model and show that it is Class 2 excitable in response to ramps of current
but Class 1 excitable in response to steps of current. The apparent contradiction is
resolved in Fig.7.10d and e, where we consider the model’s phase portraits. Notice
the coexistence of the resting state and a limit cycle attractor. The resting state
loses stability via subcritical Andronov-Hopf bifurcation at I = 5.25, so the emerging

• Class II for ramps, I for Steps
• subcr. AH at I = 5.25 for ramps
• Saddle homoclinic for I ≈ 3.89
for steps

• near BT

Gray: attraction domain for resting state.
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Figure 7.11: Coexistence of stable equilibrium and spiking limit cycle attractor in
the INa,p+IK-model. Left: The resting state is about to disappear via saddle-node
bifurcation. Right: The resting state is about to lose stability via subcritical Andronov-
Hopf bifurcation. Right (left) arrows denote the location and the direction of an
excitatory (inhibitory) pulse that switches spiking behavior to resting behavior.

spiking has non-zero frequency at I ≈ 5.25. However, injecting steps of current results
in transitions to the limit cycle even before the resting state loses its stability. The
limit cycle in the model appears via saddle homoclinic orbit bifurcation at I ≈ 3.8866,
and its period is quite large, resulting in the Class 1 response to steps of current.
The F-I curves for homoclinic bifurcations have logarithmic scaling, so small-frequency
oscillations are difficult to catch numerically, let alone experimentally.

The surprising discrepancy in Fig.7.10a occurs because the resting state of the
INa,p+IK-model is near the Bogdanov-Takens bifurcation (i.e., the model is near a
transition from resonator to integrator). Such a bifurcation was recorded, though
indirectly, in some neocortical pyramidal neurons, as we will show later in this chapter
and in chapter 8. Another surprising example of Andronov-Hopf bifurcation with Class
1 excitability is presented in exercise 6. To avoid such surprises, we adopt the ramp
definition of excitability throughout the book.

7.1.6 Bistability

When transition from the resting to the spiking state occurs via saddle-node (off in-
variant circle) or subcritical Andronov-Hopf bifurcation, there is a coexistence of a
stable equilibrium and a stable limit cycle attractor just before the bifurcation, as we
illustrate in Fig.7.11. We refer to such systems as bistable. They have a remarkable
neurocomputational property: bistable systems can be switched from one state to the
other by an appropriately timed brief stimulus. Rinzel (1978) predicted such a be-
havior in the Hodgkin-Huxley model, and then bistability and hysteresis were found

Excitatory / inhibitory pulses can shift the neuron from its resting
state to repetitive firing.
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232 Excitability

In exercise 3 we prove that noise can make such oscillations sustained. While the
state of the system is perturbed and returns to the focus equilibrium, another strong
random perturbation may push it away from the equilibrium, thereby starting a new
damped oscillation. As a result, persistent noisy perturbations create a random se-
quence of damped oscillations and do not let the neuron rest. The membrane potential
of such a neuron exhibits noisy sustained oscillations of small amplitude, depicted in
Fig.7.16 and discussed in section 6.1.4.

Injected DC current or background synaptic noise increases the resting potential,
changes its eigenvalues, and hence changes the frequency and amplitude of noisy oscil-
lations. Fig.7.16 depicts typical cases when the frequency and the amplitude increase
as the resting state becomes more depolarized.

One should be careful to distinguish fast and slow subthreshold oscillations of mem-
brane potential. Fast oscillations, as in Fig.7.16, are those having a period comparable
with the membrane time constant or with the period of repetitive spiking. In con-
trast, some neurons found in entorhinal cortex, inferior olive, hippocampus, thalamus,
and many other brain regions can exhibit slow subthreshold oscillations with a pe-
riod of 100 ms and more. These oscillations reflect the interplay between fast and
slow membrane currents, such as Ih or IT, and may be irrelevant to the bifurcation
mechanism of excitability. We will discuss this issue in detail in section 7.3.3 and in
chapter 9. Amazingly, such neurons still possess many neurocomputational proper-
ties of resonators, such as frequency preference and rebound spiking, but exhibit these
properties on a slower time scale.

7.2.2 Frequency Preference and Resonance

A standard experimental procedure to test the propensity of a neuron to subthreshold
oscillations is to stimulate it with a sinusoidal current having slowly increasing fre-
quency (called a zap current), as in Fig.7.17. The amplitude of the evoked oscillations
of the membrane potential, normalized by the amplitude of the stimulating oscilla-
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Figure 7.17: Response of the mesV neuron to injected zap current sweeping through a
range of frequencies. Integrators and resonators have different responses.

1 Presence of sub-threshold oscillations
2 Exp. mechanism to test their presence
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Figure 7.18: Responses of integrators (top) and resonators (bottom) to input pulses
having various inter-pulse periods.

tory current, is called the neuronal impedance – a frequency domain extension of the
concept of resistance. The impedance profile of integrators is decreasing while that
of resonators has a peak corresponding to the frequency of subthreshold oscillations,
around 140 Hz in the mesV neuron in the figure. Thus, integrators act as low-pass
filters while resonators act as band-pass filters to periodic signals.

Instead of sinusoidal stimulation, consider more biological stimulation with pulses
of current simulating synaptic bombardment. The response of any neuron to input
pulses depends on the frequency content of these pulses. In Fig.7.18 we use triplets
with various inter-pulse periods to illustrate the issue. The pulses may arrive from
three different presynaptic neurons or from a single presynaptic neuron firing short
bursts.

In Fig.7.18 (top) we show that integrators prefer high-frequency inputs. The first
pulse in each triplet evokes a postsynaptic potential (PSP) that decays exponentially.
The PSP evoked by the second pulse adds to the first one, and so on. The dependence
of the combined PSP amplitude on the inter-pulse period is shown in Fig.7.19. Appar-
ently, the integrator acts as a coincidence detector because it is most sensitive to the
pulses arriving simultaneously.

Resonators also can detect coincidences, as one can see in Fig.7.19. In addition, they
can detect resonant inputs. Indeed, the first pulse in each triplet in Fig.7.18 (bottom),
evokes a damped oscillation of the membrane potential, which results in an oscillation

Integrators prefer high frequencies: detect coincidences.

Resonators are selective in a frequency band.
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Figure 7.19: Dependence of combined PSP amplitude on the inter-pulse period; see
Fig.7.18.

of the firing probability. The natural period of such an oscillation is around 9 ms for
the mesencephalic V neuron used in the figure. The effect of the second pulse depends
on its timing relative to the first pulse: if the interval between the pulses is near the
natural period, which is 10 ms in Fig.7.18 and Fig.7.20, the second pulse arrives during
the rising phase of oscillation, and it increases the amplitude of oscillation even further.
In this case the effects of the pulses add up. The third pulse increases the amplitude
of oscillation even further, thereby increasing the probability of an action potential, as
in Fig.7.20.

5ms 10ms 15ms

resonant burstnon-resonant burst non-resonant burst

Figure 7.20: Experimental observations of selective response to a resonant (10 ms
interspike period) burst in mesencephalic V neurons in brainstem having subthreshold
membrane oscillations with a natural period around 9 ms; see also Fig.7.18. Three
consecutive voltage traces are shown to demonstrate some variability of the result.
(Modified from Izhikevich et al. 2003).

Mesencephalic V neurons in brainstem having subthreshold
membrane oscillations with a natural period around 9 ms. Three
consecutive voltage traces are shown to demonstrate some variability
of the result
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5ms 15ms 10ms

inhibitory input

non-resonant burstnon-resonant burst resonant burst

Figure 7.21: Experimental observations of selective response to inhibitory resonant
burst in mesencephalic V neurons in brainstem having oscillatory potentials with the
natural period around 9 ms. (Modified from Izhikevich et al. 2003).

If the interval between pulses is near half the natural period, e.g., 5 ms in Fig.7.18
and Fig.7.20, the second pulse arrives during the falling phase of oscillation, and it
leads to a decrease in oscillation amplitude. The spikes effectively cancel each other in
this case. Similarly, the spikes cancel each other when the interpulse period is 15 ms,
which is 60 percent greater than the natural period. The same phenomenon occurs
for inhibitory synapses, as we illustrate in Fig.7.21. Here the second pulse increases
(decreases) the amplitude of oscillation if it arrives during the falling (rising) phase.

We study the mechanism of such frequency preference in exercise 4, and present its
geometrical illustration in Fig.7.22. There, we depict a projection of the phase portrait
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Figure 7.22: (Left) Projection of trajectories of the Hodgkin-Huxley model on a plane.
(Right) Phase portrait and typical trajectories during resonant and non-resonant re-
sponse of the model to excitatory and inhibitory doublets of spikes. (Modified from
Izhikevich 2000a).

Experimental observations of selective response to inhibitory
resonant burst in mesencephalic V neurons in brainstem having
oscillatory potentials with the natural period around 9 ms. (Modified
from Izhikevich et al. 2003).

42



SELECTIVE RESPONSE: EXCITATION OR INHIBITION, GEOMETRICAL
EXPLANATION

Excitability 235
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non-resonant burstnon-resonant burst resonant burst

Figure 7.21: Experimental observations of selective response to inhibitory resonant
burst in mesencephalic V neurons in brainstem having oscillatory potentials with the
natural period around 9 ms. (Modified from Izhikevich et al. 2003).

If the interval between pulses is near half the natural period, e.g., 5 ms in Fig.7.18
and Fig.7.20, the second pulse arrives during the falling phase of oscillation, and it
leads to a decrease in oscillation amplitude. The spikes effectively cancel each other in
this case. Similarly, the spikes cancel each other when the interpulse period is 15 ms,
which is 60 percent greater than the natural period. The same phenomenon occurs
for inhibitory synapses, as we illustrate in Fig.7.21. Here the second pulse increases
(decreases) the amplitude of oscillation if it arrives during the falling (rising) phase.

We study the mechanism of such frequency preference in exercise 4, and present its
geometrical illustration in Fig.7.22. There, we depict a projection of the phase portrait
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Figure 7.22: (Left) Projection of trajectories of the Hodgkin-Huxley model on a plane.
(Right) Phase portrait and typical trajectories during resonant and non-resonant re-
sponse of the model to excitatory and inhibitory doublets of spikes. (Modified from
Izhikevich 2000a).

Important temporal coherence of pulses.
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Figure 7.24: Frozen noise experiments demonstrate frequency preference and resonance
to embedded bursts. (a) A random signal (frozen noise) is injected into a neuron (b)
in vitro to simulate in vivo conditions. The neuron responds with some spike-timing
variability, depicted in (c). (d–g) Burst input is added to the frozen noise. Note that
the neuron is most sensitive to the input having the resonant period 7 ms, which is
near the period of subthreshold oscillation (6.7 ms). Shown are in vitro responses of
mesencephalic V neuron of rat brainstem recorded by the author, Niraj S. Desai, and
Betsy C. Walcott. The order of stimulation was the first line of c, d, e, f, g, then the
second line of c, d, e, f, g, then the third line, and so on, to avoid slow artifacts.

7.2.4 Thresholds and Action Potentials

A common misconception is that all neurons have firing thresholds. Moreover, great
effort has been made to determine such thresholds experimentally. Typically, a neu-
ron is stimulated with brief current pulses of various amplitudes to elicit various de-
grees of depolarization of the membrane potential, as we illustrate in Fig.7.25 using
the Hodgkin-Huxley model. Small “subthreshold” depolarizations decay while large
“superthreshold” or “suprathreshold” depolarizations result in action potentials. The
maximal value of the subthreshold depolarization is taken to be the firing threshold
value for that neuron. Indeed, the neuron will fire a spike if depolarized just above
that value.

In vitro exp., sub-th. oscillations.
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1ms

10 mV

threshold ?

Figure 7.25: Finding the threshold in the Hodgkin-
Huxley model.

5 ms
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Figure 7.26: Variable-size action potentials in squid giant axon and revised Hodgkin-
Huxley model (Clay 1998) in response to brief steps of currents of variable magnitudes.
(Data provided by John Clay.)

The notion of a firing threshold is simple and attractive, especially when teaching
neuroscience to undergraduates. Everybody, including the author of this book, uses
it to describe neuronal properties. Unfortunately, it is wrong. First, the problem is
in the definition of an action potential. Are the two dashed curves in Fig.7.26 action
potentials? What about a curve in between (not shown in the figure)? Suppose we
define an action potential to be any deviation from the resting potential, say by 20
mV. Is the concept of a firing threshold well defined in this case? Unfortunately, the
answer is still NO.

The membrane potential value that separates subthreshold depolarizations from
action potentials (whatever the definition of an action potential is) depends on the
prior activity of the neuron. For example, if a neuron having transient Na+ current
has just fired an action potential, the current is partially inactivated, and a subsequent
depolarization above the firing threshold may not evoke another action potential. Con-
versely, if the neuron was briefly hyperpolarized and then released from hyperpolariza-
tion, it could fire a rebound postinhibitory spike, as we discuss later in this chapter
(see Fig.7.29). Apparently, releasing from hyperpolarization does not qualify as a su-
perthreshold stimulation. Why, then, did the neuron fire?
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Figure 7.26: Variable-size action potentials in squid giant axon and revised Hodgkin-
Huxley model (Clay 1998) in response to brief steps of currents of variable magnitudes.
(Data provided by John Clay.)

The notion of a firing threshold is simple and attractive, especially when teaching
neuroscience to undergraduates. Everybody, including the author of this book, uses
it to describe neuronal properties. Unfortunately, it is wrong. First, the problem is
in the definition of an action potential. Are the two dashed curves in Fig.7.26 action
potentials? What about a curve in between (not shown in the figure)? Suppose we
define an action potential to be any deviation from the resting potential, say by 20
mV. Is the concept of a firing threshold well defined in this case? Unfortunately, the
answer is still NO.

The membrane potential value that separates subthreshold depolarizations from
action potentials (whatever the definition of an action potential is) depends on the
prior activity of the neuron. For example, if a neuron having transient Na+ current
has just fired an action potential, the current is partially inactivated, and a subsequent
depolarization above the firing threshold may not evoke another action potential. Con-
versely, if the neuron was briefly hyperpolarized and then released from hyperpolariza-
tion, it could fire a rebound postinhibitory spike, as we discuss later in this chapter
(see Fig.7.29). Apparently, releasing from hyperpolarization does not qualify as a su-
perthreshold stimulation. Why, then, did the neuron fire?
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THRESHOLD MANIFOLDS FOR THE INa,p + IK MODEL

FitzHugh (1955) noticed that thresholds, if they exist, are never
numbers but manifolds, e.g., curves in two-dimensional systems.

• Integrators (close to saddle-node bifurcation) have a threshold
manifolds, given by stable manifold of fold point.

• For resonators, it depends on bifurcation type
• Bistable regime: (close to sub. AH): the unstable LC is a th.
manifold.

• In all other cases, there is no well defined th. manifold.
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Figure 7.27: Threshold manifolds and sets in the INa,p+IK-model. Parameters in (a)
are as in Fig.4.1a, and in (b), (c), and (d) as in Fig.6.16 with I = 45 (b) and I = 42
(c and d).

7.2.5 Threshold manifolds

The problem of formulating a mathematical definition of firing thresholds was first
tackled by FitzHugh (1955). Using geometrical analysis of neural models, he noticed
that thresholds, if they exist, are never numbers but manifolds, e.g., curves in two-
dimensional systems. We illustrate his concept in Fig.7.27, using phase plane analysis
of the INa,p+IK-model.

Integrators do have well-defined threshold manifolds. Since an integrator neuron is
near a saddle-node bifurcation, whether on or off an invariant circle, there is a saddle
point with its stable manifold (see Fig.7.27a). This manifold separates two regions of
the phase space, and for this reason is often called a separatrix. Depending on the prior
activity of the neuron and the size of the input, its state can end up in the shaded
area and generate a subthreshold potential, or in the white area and generate an action
potential. An intermediate-size input cannot reduce the size of the action potential; it
can only delay its occurrence. In the extreme case, a perturbation can put the state
vector precisely on the threshold manifold, and the system converges to the saddle, at
least in theory. Since the saddle is unstable, small noise present in neurons pushes the
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Figure 7.30: Direction of excitatory and inhibitory input in integrators (a) and res-
onators (b).
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Figure 7.31: Postinhibitory facilitation: A subthreshold excitatory pulse can become
superthreshold if it is preceded by an inhibitory pulse.

7.2.8 Inhibition-Induced Spiking
In Fig.7.32 (left) we use the INa,t-model introduced in chapter 5 to illustrate an inter-
esting property of some resonators: inhibition-induced spiking. Recall that the model
consists of an Ohmic leak current and a transient Na+ current with instantaneous ac-
tivation and relatively slow inactivation kinetics. It can generate action potentials due
to the interplay between the amplifying gate m and the resonant gate h.

We widened the activation function h∞(V ) so that the Na+ current is largely in-
activated at the resting state; see the inset in Fig.7.32 (right). Indeed, h = 0.27 when
I = 0. Even though such a system is excitable, it cannot fire repetitive action poten-
tials when a positive step of current (e.g., I = 10) is injected. Depolarization produced

An integrator cannot spike in response to a hyper-polarizing current,
a resonator can.
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Figure 7.31: Postinhibitory facilitation: A subthreshold excitatory pulse can become
superthreshold if it is preceded by an inhibitory pulse.

7.2.8 Inhibition-Induced Spiking
In Fig.7.32 (left) we use the INa,t-model introduced in chapter 5 to illustrate an inter-
esting property of some resonators: inhibition-induced spiking. Recall that the model
consists of an Ohmic leak current and a transient Na+ current with instantaneous ac-
tivation and relatively slow inactivation kinetics. It can generate action potentials due
to the interplay between the amplifying gate m and the resonant gate h.

We widened the activation function h∞(V ) so that the Na+ current is largely in-
activated at the resting state; see the inset in Fig.7.32 (right). Indeed, h = 0.27 when
I = 0. Even though such a system is excitable, it cannot fire repetitive action poten-
tials when a positive step of current (e.g., I = 10) is injected. Depolarization produced

An hyper-polarizing current (inhib.) can enhance the effect of
subsequent excitatory pulses.
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50 ms
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20 pA

0 pA

Figure 7.34: Long latencies
and threshold crossing of
layer 5 neuron recorded in
vitro of rat motor cortex.

To understand the dynamic mechanism of such an inhibition-induced spiking, we
need to consider the geometry of the nullclines of the model, depicted in Fig.7.32
(right). Note how the position of the V -nullcline depends on I. Negative I shifts the
nullcline down and leftward so that the vertex of its left knee, marked by a dot, moves
to the left. As a result, the equilibrium of the system, which is the intersection of the
V - and h-nullclines, moves toward the middle branch of the cubic V -nullcline. When
I = −2, the equilibrium loses stability via supercritical Andronov-Hopf bifurcation,
and the model exhibits periodic activity.

Instead of the INa,t-model, we could have used the INa + IK-model or any other
model with a low-threshold resonant gating variable. The key point here is not the ionic
basis of the spike generation mechanism, but its dynamic attribute – the Andronov-
Hopf bifurcation. Even the FitzHugh-Nagumo model (4.11, 4.12) can exhibit this
phenomenon (see exercise 1).

7.2.9 Spike Latency

In Fig.7.34 we illustrate an interesting neuronal property - latency to first spike. A
barely superthreshold stimulation evokes action potentials with a significant delay,
which could be as large as a second in some cortical neurons. Usually, such a delay is
attributed to slow charging of the dendritic tree or to the action of the A-current, which
is a voltage-gated transient K+ current with fast activation and slow inactivation. The
current activates quickly in response to a depolarization and prevents the neuron from
immediate firing. With time, however, the A-current inactivates and eventually allows
firing. (A slowly activating Na+ or Ca2+ current would achieve a similar effect.)

In Fig.7.35 we explain the latency mechanism from the dynamical systems point
of view. Long latencies arise when neurons undergo saddle-node bifurcation, depicted
in Fig.7.35 (left). When a step of current is delivered, the V -nullcline moves up so
that the saddle and node equilibria that existed when I = 0 coalesce and annihilate
each other. Although there are no equilibria, the vector field remains small in the
shaded neighborhood, as if there were still a ghost of the resting equilibrium there (see
section 3.3.5). The voltage variable increases and passes that neighborhood. As we
discussed in exercise 3 of chapter 6, the passage time scales as 1/

√
I − Ib, where Ib

is the bifurcation point (see Fig.6.8). Hence, the spike is generated with a significant

Property of integrators

Allow coding of input strengh in latency to first spike

Less sensitive to noise, since only prolonged inputs can cause spikes
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Figure 7.35: Bifurcation mechanism of latency to first spike when the injected DC
current steps from I = 0 to I > Ib, where Ib is a bifurcation value. The shaded circle
denotes the region where vector field is small. Phase portraits of the INa,p+IK-model
are shown.

latency. If the bifurcation is on an invariant circle, then the state of the neuron returns
to the shaded neighborhood after each spike, resulting in firing with small frequency,
a characteristic of Class 1 excitability (see Fig.7.3). In contrast, if the saddle-node
bifurcation is off an invariant circle, then the state does not return to the neighborhood,
and the firing frequency can be large, as in Fig.7.34 or in the neostriatal and basal
ganglia neurons reviewed in section 8.4.2.

We see that the existence of long spike latencies is an innate neurocomputational
property of integrators. It is still not clear how or when the brain uses it. Two of
the most plausible hypotheses are 1) that neurons encode the strength of input into
spiking latency, and 2) that neuronal responses become less sensitive to noise, since
only prolonged inputs can cause spikes.

Interestingly, resonators do not exhibit long latencies even though there is a neigh-
borhood where the vector field is small and even zero, as we show in Fig.7.35 (right).
When the current pulse is applied, the V -nullcline moves up and the voltage variable ac-
celerates. However, it misses the shaded neighborhood, and the neuron fires an action
potential practically without any latency. In exercise 5 we discuss why some mod-
els near Andronov-Hopf bifurcation, including the Hodgkin-Huxley model in Fig.7.26,
seem to exhibit small but noticeable latencies. In section 8.2.7 we show that latencies
could result from slow charging of the dendritic compartment. In this case, integrator
neurons exhibit latency to the first spike, while resonator neurons may exhibit latency
to the second spike (after they fire the first, transient spike).
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FLIPPING FROM AN INTEGRATOR TO A RESONATOR

• Mitral cells can be switched from being integrators to being
resonators by synaptic input.

• For resonators, it depends on bifurcation type
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Figure 7.36: Bistability of the up-state and down-state of mitral cells in rat main
olfactory bulb. The cells are integrators in the down-state and resonators in the up-
state. Membrane potential recordings are modified from Heyward et al. (2001). The
shaded area denotes the attraction domain of the up-state.

7.2.10 Flipping from an Integrator to a Resonator

One of the reasons we provided so many examples of neuronal systems in chapter 5
was to convince the reader that all neuronal models can exhibit both saddle-node
and Andronov-Hopf bifurcations, depending on the parameters describing the ionic
currents. Since the kinetics of ionic currents in neurons can change during development
or due to the action of neuromodulators, neurons can switch from being integrators to
being resonators.

In Fig.7.36 we illustrate an interesting case: mitral cells in rat main olfactory bulb
can exhibit bistability of membrane potential. That is, the potential can be in two
states: down-state around −60 mV, and up-state around −50 mV (Heyward et al.
2001). A sufficiently strong synaptic input can shift the cell between these states in
a matter of milliseconds. An amazing observation is that the down-state is a stable
node and the up-state is a stable focus, as we illustrate at the bottom of the figure and
study in detail in section 8.4.5. As a result, mitral cells can be quickly switched from
being integrators to being resonators by synaptic input.

Multistability of equilibria.
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Figure 7.36: Bistability of the up-state and down-state of mitral cells in rat main
olfactory bulb. The cells are integrators in the down-state and resonators in the up-
state. Membrane potential recordings are modified from Heyward et al. (2001). The
shaded area denotes the attraction domain of the up-state.

7.2.10 Flipping from an Integrator to a Resonator

One of the reasons we provided so many examples of neuronal systems in chapter 5
was to convince the reader that all neuronal models can exhibit both saddle-node
and Andronov-Hopf bifurcations, depending on the parameters describing the ionic
currents. Since the kinetics of ionic currents in neurons can change during development
or due to the action of neuromodulators, neurons can switch from being integrators to
being resonators.

In Fig.7.36 we illustrate an interesting case: mitral cells in rat main olfactory bulb
can exhibit bistability of membrane potential. That is, the potential can be in two
states: down-state around −60 mV, and up-state around −50 mV (Heyward et al.
2001). A sufficiently strong synaptic input can shift the cell between these states in
a matter of milliseconds. An amazing observation is that the down-state is a stable
node and the up-state is a stable focus, as we illustrate at the bottom of the figure and
study in detail in section 8.4.5. As a result, mitral cells can be quickly switched from
being integrators to being resonators by synaptic input.

Gray: attraction domain for UP state.
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5 mV

fast oscillations

20 ms
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Figure 7.37: Fast subthreshold oscillations during complex spikes of cerebellar Purkinje
neuron of a guinea-pig. (Data was by Yonatan Loewenstein.)

V-nullcline

n-
nu

llc
lin

e

?

integrator
(saddle-node bifurcation)

resonator
(Andronov-Hopf bifurcation)?

Figure 7.38: Is there an intermediate mode between integrators and resonators?

A similar phenomenon was observed in a cerebellar Purkinje neuron (see Fig.7.37).
It acts as an integrator in the down-state, but has fast (> 100 Hz) subthreshold oscil-
lations in the up-state, and hence can act as a resonator.

Cortical pyramidal neurons can also exhibit up- and down-states, though the states
are not intrinsic, but induced by the synaptic activity. Since the neurons are depo-
larized in the up-state, there is an interesting possibility that fast K+ conductances
are partially activated and the fast Na+ inactivation gate is partially inactivated so
that the neuron exhibits fast subthreshold oscillations and acts as a resonator. That
is, integrator neurons can switch to the resonator mode when in the up-state. This
possibility needs to be tested experimentally.
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In the INa,p + IK model (parameters EL, V1/2), the nullclines are parallel
close to the left knee of the fast nullcline
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Figure 7.39: Bogdanov-Takens bifurcation in the INa +IK-model (4.1, 4.2). Parameters
are as in Fig.4.1a, except n∞(V ) has k = 7 mV and V1/2 = −31.64 mV, Eleak = −79.42
and I = 5. Integrator: V1/2 = −31 mV and I = 4.3. Resonator: V1/2 = −34 mV and
I = 7.
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A small change in the parameter V1/2 can give a Saddle-Node: i.e. an
integrator
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Figure 7.39: Bogdanov-Takens bifurcation in the INa +IK-model (4.1, 4.2). Parameters
are as in Fig.4.1a, except n∞(V ) has k = 7 mV and V1/2 = −31.64 mV, Eleak = −79.42
and I = 5. Integrator: V1/2 = −31 mV and I = 4.3. Resonator: V1/2 = −34 mV and
I = 7.

58



BOGDANOV-TAKENS 3/3

or a resonator via a stable focus.
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Figure 7.39: Bogdanov-Takens bifurcation in the INa +IK-model (4.1, 4.2). Parameters
are as in Fig.4.1a, except n∞(V ) has k = 7 mV and V1/2 = −31.64 mV, Eleak = −79.42
and I = 5. Integrator: V1/2 = −31 mV and I = 4.3. Resonator: V1/2 = −34 mV and
I = 7.
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Excitability 229

zero value of the F-I curves is challenging.
Interestingly, steps of injected DC current, as in Fig.7.10c, induce the transition

“resting → spiking”. But because the model in the figure is near a codimension-2
Bogdanov-Takens bifurcation, the steps test the frequency of the limit cycle attractor
at the bifurcation “spiking → resting”, as in Fig.7.10e; that is, they test the class of
spiking! The F-I curve in response to steps in the figure is the same as the F-I curve
in response to a slowly decreasing current ramp. (As an exercise, explain why this is
true for Fig.7.10 but not for Fig.7.13.)

To summarize, we define the class of excitability according to the frequency of
emerging spiking of a neuron in response to a slowly increasing current ramp. The class
of excitability corresponds to a bifurcation of the resting state (equilibrium) resulting
in the transition “resting → spiking”. We define the class of spiking according to the
frequency of disappearing spiking of a neuron in response to a slowly decreasing current
ramp. The class of spiking corresponds to the bifurcation of the limit cycle, resulting
in the transition “spiking → resting”. Stimulating a neuron with ramps (and pulses) is
the first step in exploring the bifurcations in the neuron dynamics. Combined with the
test for the existence of subthreshold oscillations of the membrane potential, it tells
whether the neuron is an integrator or a resonator, and whether it is monostable or
bistable, as we discuss next.

7.2 Integrators vs. Resonators

In this book we classify excitable systems based on two features: the coexistence of
resting and spiking states and the existence of subthreshold oscillations. The former
feature divides all systems into monostable and bistable. The latter feature divides
all systems into integrators (no oscillations) and resonators. These features uniquely
determine the type of bifurcation of the resting state, as we summarize in Fig.7.14.
For example, a bistable integrator corresponds to a saddle-node bifurcation, whereas
monostable resonator corresponds to a supercritical Andronov-Hopf bifurcation. Inte-
grators and resonators have drastically different neurocomputational properties, sum-
marized in Fig.7.15 and discussed next (the I-V curves are discussed in chapter 6).
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Figure 7.14: Classification of neurons into
monostable/bistable integrators/resonators
according to the bifurcation of the resting state.

⇒ How does this impact network dynamics, ongoing research
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properties integrators resonators

bifurcation saddle-nodesaddle-node on 
invariant circle

subcritical
Andronov-Hopf

supercritical
Andronov-Hopf

oscillatory
potentials no yes

I-V relation
at rest non-monotone monotone

excitability class 1

spike latency large small

threshold
and rheobase well-defined

co-existence of
resting and spiking

post-inhibitory spike
or facilitation
(brief stimuli)

no yes

frequency
preference no yes

class 2 class 2 class 2

may not be defined

no yes yes no

all-or-none
action potentials yes no

inhibition-induced
spiking no possible

Figure 7.15: Summary of neurocomputational properties.

7.2.1 Fast Subthreshold Oscillations

According to the definition, resonators have oscillatory potentials, whereas integra-
tors do not. This feature is so important that many of the other neuronal properties
discussed later are mere consequences of the existence or absence of such oscillations.

Fast subthreshold oscillations, as in Fig.7.16, are typically due to a fast low-
threshold persistent K+ current. At rest, there is a balance of all inward currents
and this partially activated K+ current. A brief depolarization further activates the
K+ current and results in fast afterhyperpolarization. While the cell is hyperpolarized,
the current deactivates below its steady-state level, the balance is shifted toward the
inward currents, and the membrane potential depolarizes again. And so on.

The existence of fast subthreshold oscillatory potentials is a distinguishable feature
of neurons near an Andronov-Hopf bifurcation. Indeed, the resting state of such a
neuron is a stable focus. When it is stimulated by a brief synaptic input or an injected
pulse of current, the state of the system deviates from the focus equilibrium, then re-
turns to the equilibrium along a spiral trajectory, as depicted in Fig.7.16 (top), thereby
producing a damped oscillation. The frequency of such an oscillation is the imaginary
part of the complex-conjugate eigenvalues at the equilibrium (see section 6.1.3), and it
can be as large as 200 Hz in mammalian neurons.
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