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SYNAPTIC TRANSMISSION



ANATOMY OF THE SYNAPSE



OVERVIEW OF NEUROPIL STRUCTURE

Recall...
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BASICS OF (CHEMICAL) SYNAPTIC TRANSMISSION
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DIFFERENT CLASSES OF RECEPTORS

Non-exhaustive list!

Dale’s Law
Neurons have either excitatory or inhibitory action on all their post-synaptic targets.

▶ Highly stochastic transmission.

Some important receptors:

• Glutamaergic receptors, (neurotransmitter: Glutamate, excitatory)
• AMPA receptor, channel for Na, K, Ca and Vrev ≈ 0mV
• NMDA receptor, channel for Na, K, Ca and Vrev ≈ 0mV. It is voltage-dependent,
channel blocked by Mg.

• GABAergic receptor(s), (neurotransmitter: GABA, inhibitory)
• GABAA receptor, channel for Cl and Vrev ≈ −90mV

▶ Ca currents constitute a small proportion 10%
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2-STATES MARKOV MODEL OF SYNAPTIC CONDUCTANCE

Write [T] the transmitter concentration, we seek for

Isyn = gsyn(t) (Vpost − Vrev)
where the conductance follows:

C
α · [T]
⇌
β

O, gsyn(t) = ḡsynO(t)

▶ Square pulse shape for [T], amplitude Tmax, fixed duration ∆t.

O(t) = O∞ + (O(0)− O∞) e−t/τd , τd =
1

α · Tmax + β
, [T] > 0

= O(∆t)e−tβ , t > ∆t
▶ Difference of exponentials model

Link to pre-synaptic membrane [Destexhe-etal:94]

[T](Vpre) =
Tmax

1+ e−(Vpre−VT)/Kp
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THE AMPA RECEPTOR

Rb = 13 � 106M�1s�1 Rd = 900s�1 Rr = 64s�1 Ro = 2.7 � 103s�1

Rc = 200s�1

0mV

B(V ) =
1

1 + exp(�0.062V )[Mg]/3.57

1 Two glutamate molecules needed to open the channel (cooperativity).
2 Time course of current determined by Glu-unbinding time-constant
3 Fluctuating number (10-100) attached to the PSD
4 Desensitized states that saturate response→ depression

However, it is often simply modeled with: IAMPA(t) = g0e−t/τAMPA

≈0mV︷ ︸︸ ︷
EAMPA −Vmem

Heaviside(t),

τAMPA ≈ 1− 5ms
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THE NMDA RECEPTOR 1/2

Isyn = ḡNMDAO(t)B(V) · (ENMDA − V)

1 Longer time scales than for AMPA
2 ENMDA ≈ 0
3 Partially blocked by Mg, requires depolarization to open
4 Coincidence detector

We have [Jahr-Stevens:90]:  B(V) = 1
1+e−(V−VT)/16.13

VT = 16.13 ln [Mg2+]
3.57

10



THE NMDA RECEPTOR 2/2

[Jahr-Stevens:90] Note the sigmoidal curve on the rhs.

A B
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Φιγυρε 5.16 ∆επενδενχε οφ τηε ΝΜ∆Α χονδυχτανχε ον τηε µεµβρανε ποτεντιαλ
ανδ εξτραχελλυλαρ Μγ2+ χονχεντρατιον. Νορµαλ εξτραχελλυλαρ Μγ2+ χονχεντρατιονσ
αρε ιν τηε ρανγε οφ 1 το 2 µΜ. Τηε σολιδ λινεσ αρε τηε φαχτορσ ΓΝΜ∆Α οφ εθυα−
τιον 5.36 φορ διφφερεντ ϖαλυεσ οφ [Μγ2+], ανδ τηε σψµβολσ ινδιχατε τηε δατα ποιντσ.
(Αδαπτεδ φροµ ϑαηρ ανδ Στεϖενσ, 1990.)

φορ αν ισολατεδ πρεσψναπτιχ ρελεασε τηατ οχχυρσ ατ τιµε τ = 0. Τηισ εξπρεσ−
σιον, χαλλεδ αν αλπηα φυνχτιον, σταρτσ ατ 0, ρεαχηεσ ιτσ πεακ ϖαλυε ατ τ = τσ, αλπηα φυνχτιον
ανδ τηεν δεχαψσ ωιτη α τιµε χονσταντ τσ.

Ωε µεντιονεδ εαρλιερ ιν τηισ χηαπτερ τηατ ΝΜ∆Α ρεχεπτορ χονδυχτανχε
ηασ αν αδδιτιοναλ δεπενδενχε ον τηε ποστσψναπτιχ ποτεντιαλ νοτ νορµαλλψ ΝΜ∆Α ρεχεπτορ
σεεν ιν οτηερ χονδυχτανχεσ. Το ινχορπορατε τηισ δεπενδενχε, τηε χυρρεντ
δυε το τηε ΝΜ∆Α ρεχεπτορ χαν βε δεσχριβεδ υσινγ αν αδδιτιοναλ φαχτορ
τηατ δεπενδσ ον τηε ποστσψναπτιχ ποτεντιαλ, ς. Τηε ΝΜ∆Α χυρρεντ ισ ωριτ−
τεν ασ γΝΜ∆ΑΓΝΜ∆Α(ς)Π(ς − ΕΝΜ∆Α). Π ισ τηε υσυαλ οπεν προβαβιλιτψ
φαχτορ. Τηε φαχτορ ΓΝΜ∆Α(ς) δεσχριβεσ αν εξτρα ϖολταγε δεπενδενχε δυε
το τηε φαχτ τηατ ωηεν τηε ποστσψναπτιχ νευρον ισ νεαρ ιτσ ρεστινγ ποτεντιαλ,
ΝΜ∆Α ρεχεπτορσ αρε βλοχκεδ βψ Μγ2+ ιονσ. Το αχτιϖατε τηε χονδυχτανχε,
τηε ποστσψναπτιχ νευρον µυστ βε δεπολαριζεδ το κνοχκ ουτ τηε βλοχκινγ
ιονσ. ϑαηρ ανδ Στεϖενσ (1990) ηαϖε ⇒ττεδ τηισ δεπενδενχε βψ (⇒γυρε 5.16)

ΓΝΜ∆Α =
(

1+ [Μγ2+]
3.57 µΜ εξπ(−ς/16.13 µς)

)−1

. (5.36)

ΝΜ∆Α ρεχεπτορσ χονδυχτ Χα2+ ιονσ ασ ωελλ ασ µονοϖαλεντ χατιονσ.
Εντρψ οφ Χα2+ ιονσ τηρουγη ΝΜ∆Α ρεχεπτορσ ισ α χριτιχαλ εϖεντ φορ
λονγ−τερµ µοδι⇒χατιον οφ σψναπτιχ στρενγτη. Τηε φαχτ τηατ τηε οπενινγ
οφ ΝΜ∆Α χηαννελσ ρεθυιρεσ βοτη πρε− ανδ ποστσψναπτιχ δεπολαριζατιον
µεανσ ΝΜ∆Α ρεχεπτορσ χαν αχτ ασ χοινχιδενχε δετεχτορσ οφ σιµυλτανεουσ χοινχιδενχε

δετεχτιονπρε− ανδ ποστσψναπτιχ αχτιϖιτψ. Τηισ πλαψσ αν ιµπορταντ ρολε ιν χοννεχτιον
ωιτη τηε Ηεββ ρυλε φορ σψναπτιχ µοδι⇒χατιον δισχυσσεδ ιν χηαπτερ 8.
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THE GABA RECEPTORS, JUST FOR GABAA... (THERE IS A GABAB)

1 Often found close to the cell body
2 Responsible for fast inhibition
3 Current mostly carried by Cl
4 EGABAA ≈ −80mV

Current approximation like the AMPA one:

IGABAA = ḡGABAAO(t) (EGABAA − V)

with
O(t) ∼ e−t/τr([GABA]) − e−t/τd

where α ≈ 5mM−1ms−1, β ≈ 0.18ms
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SYNAPTIC TRANSMISSION AT EXCITATORY SYNAPSESGlutamate (Glu) receptors

I Two major types of Glu receptor: AMPA and NMDA

I Binding of Glu receptors opens AMPA ion channels leading to
depolarization

I Binding of Glu + su�cient depolarization opens NMDA ion
channels leading to influx of calcium

Paul C Bresslo↵ Mathematical models of protein tra�cking in neurons

1 Binding of Glu opens AMPA leading to depolarization
2 Binding of Glu+sufficient depolarization opens NMDA leading to influx of Calcium

▶ Then what? What is Calcium for?
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AMPA TRAFFICKING

Diffusion on the post-synaptic membrane Imaging of two single fluorescently tagged
AMPA receptors (red), one immobile and co-localized with a synapse, the other freely
moving in the extrasynaptic membrane. Green = presynaptic tag.
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THE POST-SYNAPTIC DENSITY (PSD)

Locus of stable receptor + anchor molecules,
[petersen-etal:03,Masugi-Tokita-etal:2007]

receptors (Tardin et al., 2003; Ashby et al., 2006). Finally, it is im-
portant to consider that the size of the illumination spot in FRAP
experiments is typically larger than the synapse, which prohibits
an unequivocal distinction between synaptic or extrasynaptic re-
ceptor exchange.

Single-particle tracking (SPT) is a powerful technique to track
the movement of individual receptors in real time with high tem-
poral and spatial resolution. Unlike FRAP (or the complementary
technique of photoactivation using photoswitchable fluorescent
proteins), which measures the bulk exchange of a population
of molecules, SPT can be used to measure the diffusion of indi-
vidual receptors, or at least that of individual probes bound to
diffusing receptors. Fluorescently coupled antibodies directed
against extracellular receptor epitopes allow the visualization
and mapping of receptor trajectories. Diffusion coefficients can
be derived by plotting the receptor mean square displacement
(MSD) over time, which can also distinguish free versus confined
diffusion. In the case of Brownian or free diffusion, the MSD plot
over time appears linear, whereas for confined receptor move-
ment the MSD plot will curve to a quasi-maximum (Qian et al.,
1991; Kusumi et al., 1993; Saxton, 1993) (Figures 1A and 1B).
As receptors move between different membrane microdomains,
they can undergo alternating periods of free and confined diffu-

sion. Several different types of physical barriers could confine
receptor movements. In the case of receptor ‘‘corralling,’’ rapidly
moving receptors will diffuse in a semiconfined space, an effect
that does not necessarily lead to changes in the instantaneous
diffusion coefficient. However, confined receptors that undergo
a local decrease in the diffusion coefficient indicate the presence
of either reversible biochemical interactions (e.g., receptor-PSD
protein interactions) or nonchemical interactions arising from
molecular crowding and collisions with other molecules in
or near the membrane. SPT also allows quantification of receptor
exchange rates between distinct compartments and, con-
versely, dwell times, providing important information on the equi-
libria between receptor populations, which define their statistical
thermodynamic distribution within the plasma membrane.

Initial SPT experiments in neurons utilized 500 nm antibody-
coated latex beads that were directed against subunits of gly-
cine receptors or AMPA receptors (Meier et al., 2001; Borgdorff
and Choquet, 2002) and provided a first glimpse of individual
glutamate receptor mobility in the extrasynaptic neuronal mem-
brane. An improvement over latex bead tracking was the use
of antibodies conjugated to organic dyes (e.g., Cy3, Cy5). The
smaller antibody-receptor complex allows for optical tracking
of receptor movement within more spatially restricted domains,

Figure 1. Nanoarchitecture of the PSD and
Single-Particle Tracking of AMPA
Receptors in Synaptic and Extrasynaptic
Compartments
(A) AMPA receptor trajectories within synaptic and
extrasynaptic compartments. As a control, immo-
bilized Cy5-anti-GluR2 was fixed onto a coverslip
(1). Examples 2–5 are trajectories from tracking
of single Cy5-anti-GluR2 bound to AMPA recep-
tors on living dendrites. The trajectories recorded
in synaptic and extrasynaptic regions are shown
in green and red, respectively. Examples 2 and
3 remained within synaptic sites, example 4
remained in the extrasynaptic membrane, and
example 5 began in the extrasynaptic region and
entered into a synaptic site.
(B) Plots of the mean square displacement (MSD)
versus time corresponding to the examples shown
in (A). Trajectories 2 and 3 remaining in synaptic
regions had varying degrees of confinement and
were less mobile than trajectory 4. Error bars are
equal to the SEM.
(A) and (B) are adapted from Tardin et al. (2003);
reprinted with permission from Nature Publishing
Group, copyright 2003.
(C) Individual GluR1-QDs are restricted to subdo-
mains within active synapses. Five individual syn-
aptic regions defined as a set of connected pixels
are indicated. Individual pixels divided into
0.0016 mm2 subdomains were coded based on
the presence (pink) or absence (white) of
a GluR1-QD residing in that location at any time
during the imaging period as defined by the cen-
troid of a 2D Gaussian function fit to the GluR1-
QD fluorescent signal. Scale bar, 200 nm. Adapted
from Ehlers et al. (2007); reprinted with permission
from Elsevier, copyright 2007.

(D) CaMKII immunogold labeling (white dots) on the cytoplasmic surface of a biochemically isolated PSD. Shown is the cytoplasmic surface of the PSD. A mem-
brane patch is indicated by the arrowhead. Scale bar, 100 nm. Adapted from Petersen et al. (2003); reprinted with permission from the Society for Neuroscience,
copyright 2003.
(E) AMPA receptor distribution at synapses (colored in red) in the molecular layer of the cerebellum shown by SDS-digested freeze-fracture replica labeling. Intra-
membrane particles are shown on the E face of the PSD and contain dark immunogold particles for pan-AMPA receptors (GluR1-4). Scale bar, 100 nm. Adapted
from Masugi-Tokita et al. (2007); reprinted with permission from the Society for Neuroscience, copyright 2007.

474 Neuron 58, May 22, 2008 ª2008 Elsevier Inc.

Neuron

Review

Scale bar 100nm
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SYNAPTIC WEIGHT DYNAMICS: PLASTICITY
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SYNAPTIC PLASTICITY

Long Term Plasticity was found in 1973 by Bliss-etal.

Definition
The synaptic weight is the amplitude of the post-synaptic membrane potential.

It can be affected by changes in the

1 release probability of neurotransmitter (⇝ STP)
2 number of release sites
3 maximal conductance of AMPA receptor (⇝ LTP)
4 AMPA number (⇝ LTP)
5 etc

18



SYNAPTIC PLASTICITY

Long Term Plasticity was found in 1973 by Bliss-etal.

Definition
The synaptic weight is the amplitude of the post-synaptic membrane potential.

It can be affected by changes in the

1 release probability of neurotransmitter (⇝ STP)
2 number of release sites
3 maximal conductance of AMPA receptor (⇝ LTP)
4 AMPA number (⇝ LTP)
5 etc

The synapse response displays:

1 facilitation: progressive increase in the weight (last few sec.)
2 potentiation: as facilitation, slower to develop but outlasts the stimulus
3 depression: opposite of potentiation
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SHORT-TERM DEPRESSION (LASTS FEW SEC.)

Experimental results [Tsodyks-Markram:97]
Short-term depression
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SHORT-TERM FACILITATION

[Markram-Tsodyks:98]Short-term facilitation
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SHORT-TERM PLASTICITY

Frequency dependence

Heterogeneity in Synaptic Properties of Convergent Con-
nections from the Same Class of Neuron. Heterogeneity of
synaptic properties could be determined by using only paired
recordings (6, 13–15), but it is not clear whether this hetero-
geneity could reflect an underlying potential for plasticity
because it is not known how strongly the various postsynaptic
targets dictate these synaptic properties. Similarly, although
the data from the triple recordings indicate heterogeneity in
the values of synaptic parameters formed by the same axon, it
is still possible that subtypes of target neurons or specific
dendritic branches dictate these values. To determine the
extent to which the postsynaptic neuron dictates synaptic
properties, we examined the properties of synaptic connections
from the same morphological class of neuron onto a single
target neuron. Two or three presynaptic pyramidal neurons
and one postsynaptic target interneuron were recorded in
layers 2–3 and 4 where such convergence appears common
(Fig. 3A). These experiments showed that all responses facil-
itated, but the time courses of facilitation were different (Fig.
3B). An average of 64 ! 37.8% of the putative synapses of one

connection was on the same dendritic branch as those formed
by the other convergent input (71 putative synapses examined).

To compare facilitating synaptic connections quantitatively,
the model for synaptic depression was extended. An incorpo-
ration of a pulse-like increase in U by APs (the running value
of U is referred to as u) and an exponential decay with a time
constant !facil between APs allowed the simulation of both
depressing (not shown) and facilitating synaptic connections
for all frequencies (Fig. 4 A1, A2, and B). A comparison of pairs
of convergent inputs onto a single postsynaptic neuron re-
vealed a 1.97 ! 1.12-fold difference in A (range, 1.12–4; A,
11.4 ! 7.2 mV; 7 paired convergent inputs), a 2.38 ! 1.16-fold
difference in U (range, 1–4; U, 0.049 ! 0.037), a 9.5 ! 9.8-fold
difference in !rec (range, 1–20; !rec, 399 ! 295 ms), and a 2.23 !
0.79-fold difference in !facil (range, 1.3–3; !facil, 1797 ! 1247

FIG. 3. Convergent input to an interneuron from the same class of
pyramidal neuron. (A) A Neurolucida computerized reconstruction of
three pyramidal neurons presynaptic to one interneuron in layer 2–3.
The light-microscopically identified putative contacts are marked as
white stars. (B) The average (30 sweeps) synaptic response produced
by each synaptic connection. For cell 1, A was 2.5 mV, U was 0.1, !rec
was 30 ms, and !facil was 1,700 ms. The number of putative contacts
established was 3. For cell 2, the value of these parameters were, 10
mV, 0.03, 600 ms, and 3,000 ms, respectively, and the number of
putative contacts was 6. For cell 3, the values were 3.2 mV, 0.12, 30 ms,
and 3,900 ms, and the number of putative contacts was 5.

FIG. 4. Frequency dependence, signaling regimes, and synaptic
transfer functions of facilitating synapses. (A1) Average EPSPs (4
sweeps) recorded in interneuron (30 Hz). Membrane potential, "89
mV. (A2) Simulated synaptic response (30 Hz). Postsynaptic potential
is computed by using a passive membrane mechanism !mem!dV!dt #
"V $ (Rin!Isyn(t)) with Rin of 1 G% and !mem # 60 ms (V # voltage,
Isyn # synaptic current). (B) Steady-state EPSP amplitudes vs. pre-
synaptic AP frequency. Each point represents average of 20–30
EPSPst. Solid line, model prediction (membrane nonlinearity not
accounted for). Same synaptic connection as in A. Dashed line, inverse
relationship with frequency. Peak frequency marked as ", limiting
frequency as #. # is determined when the model fit of the experimental
data deviates 10% from the 1!f curve. (C) Net depolarization as a
function of presynaptic frequency (product of EPSPst, presynaptic
frequency and membrane time constant, 60 ms) illustrating the
continuum of signaling regimes from supra-linear to sub-linear. (D)
Simulated postsynaptic current (Im) generated by Poisson AP trains
with a sequence of instantaneous transitions from 0 to 80 Hz. Model
parameters, Ase # 1,540 pA, U # 0.03, !rec # 130 ms, !facil # 530 ms.
The trace represents the average of 500 ‘‘sweeps.’’

5326 Neurobiology: Markram et al. Proc. Natl. Acad. Sci. USA 95 (1998)

Figure 1: Markram-Tsodyks:98
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HEBBIAN LEARNING

The basic mechanism for activity-dependent synaptic plasticity was first formally
postulated

Hebb’s rule (1949)
When an axon of cell A is near enough to excite cell B or repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

Simply restated, when a presynaptic cell and its postsynaptic cell are repetitively
active together, the efficacy of the synaptic transmission between them improves.
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LTP AND LTD

Experimental support for Hebb’s rule [Fleming-etal:10]

90 NATURE CHEMICAL BIOLOGY | VOL 6 | FEBRUARY 2010 | www.nature.com/naturechemicalbiology

REVIEW ARTICLE NATURE CHEMICAL BIOLOGY DOI: 10.1038/NCHEMBIO.298

Synaptic plasticity is primarily mediated by two subtypes of 
glutamate-gated ion channels concentrated at postsynaptic 
sites: AMPA and NMDA receptors4,88. AMPA receptors mediate 
the majority of fast excitatory synaptic transmission by ensur-
ing rapid responses to synaptically released glutamate. NMDA 
receptors are blocked at normal resting membrane potentials 
by Mg+2, but open when su!cient numbers of AMPA receptors 
are activated to depolarize the membrane potential from resting 
to positive potentials, which relieves the magnesium blockade. 
Once opened, NMDA receptors allow calcium to "ow into the 
neurons. Intracellular calcium in turn triggers various signaling 
cascades that regulate the tra!cking of AMPA receptors (see refs. 
4 and 88 for a detailed explanation of the role of NMDA recep-
tors in the induction of synaptic plasticity). Kainate receptors, 
another family of glutamate-gated ion channels found at excita-
tory synapses, may play a role in synaptic plasticity, though their 
precise function remains largely unknown89,90. Depending on the 

frequency of the synaptic activity, AMPA receptors are either 
inserted or removed from synapses, resulting in the potentiation 
or depression of synaptic transmission, respectively (Fig. 1). In 
particular, high-frequency stimulation (HFS) of synaptic activity 
(for example, stimulating a population of presynaptic axons 100 
times over one second) triggers the insertion of AMPA recep-
tors into synapses, and low-frequency stimulation (LFS) (for 
example, stimulating 900 times over 15 min) leads to the removal 
of AMPA receptors. Once initiated, these activity-dependent 
changes in the strength of synaptic transmission are persistent, 
and have thus been termed long-term potentiation (LTP) and 
long-term depression (LTD) (Fig. 1). LTP and LTD are among 
the most intensively investigated forms of synaptic plasticity and 
have been the most thoroughly characterized in regions of the 
hippocampus (for example, CA1 synapses), though frequency-
dependent changes in synaptic transmission occur at synapses 
throughout the nervous system.

Box 1 | LTP and LTD 
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Figure 1 | LTP and LTD. (a) LTP and LTD trigger the insertion and removal, respectively, of AMPA receptors at synapses. (b) The animal (typically a 
rat or mouse) is euthanized, the brain region of interest is isolated and sliced into ~500- m sections, and the resulting brain slices are placed in an 
oxygenated chamber. Hippocampal brain slices are typically prepared in ~10 min and are useful for experiments for ~6–8 h. (c) Hippocampal brain slices 
are a highly organized, densely packed collection of neurons, with the cell bodies, axons and dendrites each lying in stereotyped regions. A stimulating 
electrode is placed in the region of axons and is used to activate synapses. A recording electrode is placed in a field of activated synapses and measures 
a drop in voltage due to the flow of ions away from the electrode into the cell through open ion channels (colloquially referred to as a “field recording”). 
Alternatively, the recording electrode may be directly inserted into a postsynaptic neuron to measure the amount of current needed to maintain the cell 
at a fixed membrane potential as ions flow into the cell through open ion channels. (d) Examples of field excitatory postsynaptic potentials (fEPSPs), 
measured from synapses under (i) basal, (ii) depressed and (iii) potentiated conditions (see e). (e) Examples of typical LTP (closed circles) and LTD 
(open circles) experiments induced following brief periods of HFS and LFS, respectively. The amplitude or slope of the fEPSP (circles, see d) is measured 
once every minute. 
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How are these changes induced? 23



SPIKE TIME DEPENDANT PLASTICITY

Also called STDP, [Markram-etal:97]

EPSPs was also dependent on the frequency
of AP-EPSP pairs in the train, with a sharp
onset at 10 Hz (Fig. 2C). Although APs
paired with EPSPs reliably induced an in-

crease in EPSP amplitude, pairing of sus-
tained depolarization of the postsynaptic
neuron to below the threshold for AP ini-
tiation or to between 230 and 210 mV (in

the absence of AP initiation) with a high-
frequency train of EPSPs failed to cause a
significant change in EPSP amplitudes (Fig.
2D) (10), which suggests that initiation of
postsynaptic APs and their coincidence
with EPSPs was required to induce persis-
tent changes in active synapses. Because
most synaptic contacts were located on
dendrites around 100 mm away from the
cell body (Fig. 1A) (7), the coincidence of
the back-propagating AP with active syn-
apses (11) seems to be a critical step for
induction of changes in EPSPs. The persis-
tent increase in EPSPs caused by pairing of
individual APs and EPSPs was prevented
when N-methyl-D-aspartate (NMDA) re-
ceptors were blocked (12), which suggests
that the back-propagating AP interacts
with activated NMDA receptors to trigger
the synaptic modification, for example,
through Ca21 inflow.

The limits of the time window for AP-
EPSP interaction were investigated in uni-
and bidirectionally connected neurons (13).
When postsynaptic APs preceded EPSPs by
100 ms (Fig. 3, A and C) or followed the last
EPSP in a burst by 100 ms (Fig. 3, A and C),
no effect on EPSP amplitudes was observed,
which suggests that APs and EPSPs must
coincide within 100 ms in order to induce
changes in EPSPs. To determine the limits of
the AP-EPSP coincidence window, the ef-
fect of an AP initiated shortly before or
shortly after the onset of an EPSP was tested
simultaneously in bidirectionally connected
neurons (Fig. 3B). A burst of APs was trig-
gered at a frequency of 10 Hz in one cell;
with a 10-ms delay, an identical burst was
triggered in the other cell. This ensured that
each postsynaptic AP in the burst occurred

Fig. 2. AP-EPSP coinci-
dence requirement. (A)
Synchronization of indi-
vidual postsynaptic APs
with EPSPs. Two APs,
separated by 50 ms,
were evoked in a presyn-
aptic neuron (Pre. APs),
which elicited unitary
EPSPs in the postsynap-
tic neuron (Post. EPSPs).
Postsynaptic APs (Post.
APs) were synchronized
with each EPSP by injec-
tion of current pulses
into the postsynaptic
neuron (approximately 5
ms after the presynaptic
AP). APs were evoked
by injection of 5-ms,
1-nA current pulses into
cell bodies (lm). (B) AP-
EPSP coincidence. Three
stimulation protocols
were used. (i) Two, 5, or
10 EPSPs and postsyn-
aptic APs at 20 Hz,
paired 10 times every 4 s
(n 5 21; solid squares); (ii) 5 or 10 postsynaptic APs alone at 20 Hz (n 5 5; open diamonds); and (iii) 5
or 10 EPSPs alone at 20 Hz (n 5 5; solid diamonds). Time axes are normalized to the onset of the pairing
(arrow at time 0). (C) Frequency dependence. Five EPSPs and postsynaptic APs at 2 (n 5 2), 5 (n 5 5),
10 (n 5 9), 20 (n 5 11), 30 (n 5 3), and 40 Hz (n 5 4) were synchronized in bursts and repeated 10 times
every 4 s. (D) Sustained postsynaptic depolarization. Two stimulation protocols were used. (i) Circles
represent eight experiments in which bursts of 5 to 10 EPSPs (at 20 to 40 Hz, repeated 10 times every
4 or 20 s) were synchronized with sustained depolarization to below the AP threshold (200 to 500 ms;
250 mV ). (ii) Squares represent six experiments in which similar bursts were synchronized with
depolarizations to between 230 and 210 mV in neurons loaded with Lidocaine [N-ethylbromide
quaternary salt (QX-314, 5 mM; RBI, Bethesda, Maryland)].

Fig. 3. Interaction and coincidence intervals. (A) Interaction interval. Bursts of
postsynaptic APs were evoked in two bidirectionally coupled cells 100 ms
apart, thus the interval of 1100 ms and 2100 ms between EPSPs and
postsynaptic APs was investigated in the same slice and at the same time.
The EPSPs are represented by the vertically expanded traces between the
time points indicated by the arrows. Vertically expanded EPSPs of cell 1 were
corrected for the skewed baseline. (B) Coincidence interval. A 10-Hz train of
5 APs in cell 1 (only first AP shown) was shifted by 10 ms in cell 2. An AP was
thus triggered in cell 1 10 ms before an AP in cell 2 in a bidirectionally

connected pair of neurons. This resulted in the postsynaptic APs occurring
about 10 ms before the onset of the EPSP in cell 1 [210 ms; solid squares in
(C)] and about 10 ms after the onset of EPSPs in cell 2 [110 ms; open
squares in (C)]. This pattern was evoked in a burst of five such temporally
shifted APs, at 10 Hz, and repeated 10 to 15 times every 4 s. (C) Interaction
and coincidence intervals. Coincidence interval is represented by data from
six bidirectionally coupled neurons. The averaged data when EPSPs and
postsynaptic APs were 100 ms apart are also represented (1100 ms, open
circles, n 5 6; 2100 ms, closed circles, n 5 4).
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Often wrongly stated as:

∆wij =
{

A+e−dt/τ+ , dt > 0
−A+edt/τ− , dt < 0

, dt = tpre − tpost

▶ Quid frequency, in-vivo results, bAP is not critical...?

▶ It is static description, what about DS?→ Open question...
24



IS IT THIS SIMPLE? [TIGARET-ETAL:14]

⇒ Former PhD Student Y. Rodrigues tackles this with a PDMP.
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MODEL OF [RODRIGUES-ETAL:23]

⇒ Former PhD Student Y. Rodrigues tackles this with a PDMP.
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SUMMARY OF IMPORTANT PLASTICITY RESULTS

Shouval-etal:10

Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 19 | 3

Shouval et al. STDP, a consequence
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FIGURE 1 | Classical induction protocols for synaptic plasticity. (A) Changing 
the stimulation frequency of robust extracellular stimulation affects the sign and 
magnitude of synaptic plasticity. Left: high-frequency stimulation results in LTP 
whereas low-frequency stimulation produces LTD. Right: frequency vs. plasticity 
curve (from O’Connor et al., 2005a). (B) Low-frequency stimulation paired with 
voltage clamping of the postsynaptic cell can also result in LTP or LTD depending 
on the postsynaptic voltage. Left: moderate depolarization produces LTD where 
as large depolarization produces LTP. Right: depolarization vs. plasticity curve 

(from Ngezahayo et al., 2000). (C) Theta-burst stimulation tries to mimic more 
naturalistic conditions. In the hippocampus of awake behaving animals there is a 
strong theta-frequency oscillation (right). Left: In a theta-burst induction protocol, 
short high-frequency bursts are delivered each 200 ms, or at a frequency of 5 Hz, 
within the theta range (from Hirase et al., 1999). (D) STDP protocols are induced 
by precisely stimulating the presynaptic afferents at a specific time ( t) before or 
after a postsynaptic spike. Right: The precise t determines the sign and 
magnitude of synaptic plasticity (from Bi and Poo, 1998).
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MECHANISMS OF LONG-TERM PLASTICITY

METTRE TIGARRET ET RESULTATS DE YURI [Kotaleski-etal:10]

Nature Reviews | Neuroscience
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contributions to, this field. Finally, we review some key 
computational models of the molecular mechanisms 
underlying synaptic plasticity that represent the diver-
sity of simulation approaches, brain regions, molecular 
pathways and emergent information processing proper-
ties. Importantly, the models we describe were selected 
to highlight the discoveries that resulted from simula-
tions, some of which have subsequently been confirmed 
in empirical experiments.

Molecular mechanisms of synaptic plasticity
The specific types of neuronal and synaptic activity that 
are required for the induction of long-term potentia-
tion (LTP) and long-term depression (LTD) are diverse 
and depend on the brain region and cell type. Excellent 
reviews of these different forms of synaptic plasticity 
have been published elsewhere4,5. In general, the two 
main features of most induction protocols at excita-
tory, glutamatergic synapses are the presynaptic release 
of glutamate and postsynaptic depolarization4, which 
together lead to an increase in the intracellular Ca2+ 
concentration in the postsynaptic cell through several 
mechanisms (FIG. 1a).

The increase in postsynaptic Ca2+ concentration, 
which is crucial for the induction of both LTP and 
LTD6,7, leads to activation of many molecule species 
that are implicated in synaptic plasticity (FIG. 1b). In some 
systems, the magnitude of the Ca2+ elevation predicts 
whether an induction paradigm will produce potentia-
tion or depression, with a large Ca2+ increase producing 
potentiation and a small increase producing depres-
sion8,9. Nonetheless, the Ca2+ concentration by itself is 
not always sufficient to predict the direction of plastic-
ity10,11. In some cell types, the source of the Ca2+ influx 
influences whether LTD or LTP develops; for example, 
LTD requires activation of either metabotropic glutamate 
receptors (mGluRs) or L-type Ca2+ channels, whereas 
LTP is usually NMDA (N-methyl-d-aspartate) receptor 
dependent5,12. Furthermore, the nonlinear interactions 
between different sources of Ca2+ and its multiple target 
molecules make it difficult to predict the consequences 
of neural activity.

Several protein kinases and phosphatases, activated 
through transmembrane receptors, are implicated in 
either the induction or the maintenance of synaptic 
plasticity (FIG. 1b). Induction includes events during 
the stimulation protocol that lead to plasticity, whereas 
maintenance involves events that occur after plasticity 
has been induced. Maintenance events can be blocked by 
the application of drugs tens of minutes after induction. 
Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) 
— activated by Ca2+-bound calmodulin — is required 
for hippocampal and neocortical LTP. Protein kinase A  
(PKA) is required for the induction of LTP in the stria-
tum, and for the induction of a long-lasting form of 
NMDA-dependent LTP in the hippocampus (known as 
late-phase LTP)13. Protein kinase C (PKC) is required for 
the induction of LTD in the cerebellum and of mGluR-
dependent LTP in the hippocampus5. In addition, atypi-
cal forms of PKC, such as protein kinase Mζ (PKMζ), 
although not required for induction, have a role in the 

Figure 1 | Signalling pathways underlying synaptic plasticity. a | Presynaptic 
glutamate release and depolarization of the postsynaptic neuron leads to Ca2+ elevation 
in the postsynaptic cell. Glutamate is required for activation of NMDARs (N-methyl--
aspartate receptors) and metabotropic glutamate receptors (mGluRs), and depolarization 
is required for activation of NMDARs106 and voltage-dependent Ca2+ channels (VDCCs)107. 
The particular mechanism employed depends on the cell type. b | Signalling pathways 
leading to kinase activation and AMPAR (α-amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate receptor) phosphorylation. Only a subset of the known pathways is shown 
here, and not all of the pathways shown in this figure are involved in all neurons.  
Ca2+ activates Ca2+–calmodulin-dependent protein kinase 2 (CAMK2), which 
phosphorylates the AMPAR GluR1 subunit, leading to increased numbers of functional 
AMPARs. CAMK2 can be persistently activated by autophosphorylation108,109, which 
occurs when two adjacent subunits are bound to Ca2+–calmodulin. This persistently active 
form of CAMK2 is most strongly implicated in hippocampal long-term potentiation (LTP). 
Dopamine D1 receptors (D1Rs), β-adrenergic receptors (βRs)110,111 and the adenosine type 
2A receptor (A2AR), coupled to the stimulatory G protein (G

S
)

 
or olfactory G protein (G

olf
), 

contribute to LTP by activating adenylyl cyclase, whereas other dopamine D2 receptors 
(D2Rs) and muscarinic acetylcholine receptors (M2R and M4R) inhibit adenylyl cyclase. 
The cyclic AMP produced by adenylyl cyclase activates protein kinase A (PKA), which 
subsequently phosphorylates AMPAR GluR1 subunits and either protein phosphatase 1 
regulatory subunit 1B (PPP1R1B; also known as DARPP32) or inhibitor-1 (REFS 112,113). 
These decrease phosphatase activity, allowing the persistence or enhancement of both 
AMPAR phosphorylation and insertion of AMPAR in the membrane. Some types of 
muscarinic acetylcholine receptors (M1Rs) and mGluRs are coupled to phospholipase C 
(PLC), which produces diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (Ins(1,4,5)P

3
). 

Typical forms of PKC are activated by binding to both Ca2+ and DAG. MAPK2–3 
(mitogen-activated protein kinase 2–3; also known as ERK1–ERK2) is activated through a 
pathway involving receptor tyrosine kinases (RTKs) via the RAS–RAF–MEK (MAPK–ERK 
kinase) pathway, and is necessary for the gene transcription and protein translation that 
underlies persistent forms of synaptic plasticity. In addition, MAPK2–3 can be indirectly 
activated by PKC, RAP guanine nucleotide exchange factor 3 (RAPGEF3; also known as 
EPAC), Ca2+ and PKA. c | For late-phase LTP and memory storage, a combination of 
synaptic inputs and neuronal activity leads to AMPAR phosphorylation and membrane 
insertion, gene transcription and protein translation. Gα

i
, α-subunit of the inhibitory G 

protein; PDE, phosphodiesterase; PP, protein phosphatase .
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• Induced by Calcium entry (NMDA/VDCC)
• Cascade of reactions that affect PSD
• Change ḡAMPA (Phosphorylation)
• Add/Remove AMPA receptors on the PSD
• Structural change of spine size (few sec.)

Proteins involved: Ca→ CaM→ · · ·

• Kinases (CaMKII,PKA,...)
• Phosphatases (calcineurin, PP1,...) 28



MEAN FIELD MODEL FROM A NETWORK OF
COUPLED HH NEURONS



MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

CdVdt = −IL − INa − IK − Irec + Iext

spread on a 1d chain (variable θ) with periodic boundary conditions

1 N excitatory neurons
2 N inhibitory neurons

3 Jαβ(θ− θ′)/N: probability of a connection from a neuron at θ′ in population β to a
neuron at θ in population α

4 α, β = E, I
5 Jαβ(θ − θ′) is 2π-periodic.
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

CdVdt = −IL − INa − IK − Irec + Iext

spread on a 1d chain (variable θ) with periodic boundary conditions

1 N excitatory neurons
2 N inhibitory neurons
3 Jαβ(θ− θ′)/N: probability of a connection from a neuron at θ′ in population β to a
neuron at θ in population α

4 α, β = E, I
5 Jαβ(θ − θ′) is 2π-periodic.

Assume
Jα(r) = Jα,0 + Jα,1 cos(r)
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 2/2

The recurrent connections between neurons are AMPA/GABA (α → β):

Irec,i = −gαβsα,i(t) (Vi − Esyn,α)

If there is a connection between i and j, we use AMPA current:

sα,i =
1

τ2 − τ1

(
e−(t−tj)/τ2 − e−(t−tj)/τ1

)
where tj is the spike from neuron j
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SPIKE INITIATION TIME

Link between two neurons.A. Roxin, E. Montbrió / Physica D 240 (2011) 323–345 325

Fig. 1. (Color online) The synaptic time course introduces an effective fixed delay
in the interaction betweenmodel neurons. Top panel: themembrane voltage of the
presynaptic neuron which is driven by a steady input current of Iapp = 0.2 µA/cm2

causing it to spike periodically. Here only one action potential is shown. The time of
the action potential, defined as the time at which themembrane potential crosses 0
mV from below, is indicated by the dashed line labeled tpre. Second panel from top:
the EPSC in the postsynaptic cell is initiated at time tpre with no delay. It consists
of a difference-of-exponential conductance change with rise and decay times of
1 and 3 ms respectively, times the voltage of the postsynaptic cell (the reversal
potential for excitatory synapses is 0mV). The colors indicate different values of the
maximum conductance: black gE = 0.05, red gE = 0.1, blue gE = 0.2 and orange
gE = 0.4 mS ms/cm2. See Appendix A for details of the model and explanation of
units. Third panel from top: the EPSP in the postsynaptic cell. These curves were
generated by eliminating the action potential generating currents from the model,
i.e. Na and K, and subtracting off the rest potential ⇠ �64 mV. Bottom panel: the
membrane potential of the postsynaptic cell with Na and K currents intact. Note
that the time of the postsynaptic action potential, indicated by the dashed lines,
approaches tpre with increasing synaptic strength. The very long latency at time t3 is
due to an input which puts the cell membrane potential very close to threshold and
is therefore due in part to the action potential generating mechanism of the model.
The postsynaptic cell is driven by a steady input current of Iapp = 0.1µA/cm2 which
is insufficient to cause it to spike.

The resulting excitatory postsynaptic potential (EPSP) in millivolts
is shown in the third panel. At this point it is already clear that
the postsynaptic response, although initiated here simultaneously
with the presynaptic action potential, will nonetheless take a finite
amount of time to bring the postsynaptic cell to threshold, thereby
altering its firing rate. This is shown in the bottom panel. In this
case theweakest input (black) was insufficient to cause the neuron
to spike, while the other three inputs were all strong enough to
cause an action potential. The latency until action potential firing
is a function of the synaptic strength, with the latency going to zero
as the synaptic strength goes to infinity. The very long latency for
gE = 0.1 mS ms/cm2 (red curve) is due in part to the intrinsic
action potential generating mechanism. In fact, an input which
brings the neuron sufficiently close to the bifurcation to spiking
can generate arbitrarily long latencies.

Fig. 2 illustrates how this effective delay is proportional to both
the rise and decay time of the EPSC. In the top panel, the decay
time is fixed at 3 ms while the rise time is varied, while in the
bottom panel, the rise time is fixed at 0.1 ms and the decay time
is varied. From these figures it is clear that the effective delay is
proportional to both the rise and decay times. Simulations with an
EPSC modeled by a jump followed by a simple exponential decay
reveal that the effective delay is proportional to the decay time in
this case (not shown).

It is instructive to note that the effective delay, due to the
time course of the synaptic kinetics in the model neuron, can be
captured by modeling the EPSC as a Dirac delta function with a
fixed delay. This is shown in Fig. 3. In Fig. 3, the curves shown in
black are the same as in Fig. 1 for gE = 0.4 mS ms/cm2, while the

Fig. 2. (Color online) The effective delay is affected by both the rise and decay time
of the EPSC. Top: the decay is kept fixed at 3 ms and the rise time is varied. Bottom:
the rise time is kept fixed at 0.1 ms and the decay time is varied. The parameter
values are the same as in Fig. 1 with gE = 0.4 mS · ms/cm2.

red EPSC is a Dirac delta function which arrives with a fixed delay
of 3.2 ms. Note that the decay of the EPSP and the postsynaptic
spike time are well captured here. The fact that a jump in voltage
with a fixed delay can capture the effect of having continuous
synaptic kinetics was described already in [2]. In that work, the
authors studied a network of recurrently coupled integrate-and-
fire neurons with inhibitory synapses, the time course of which
wasmodeled as a jump in the voltage at a fixed delay. They showed
that the fixed delay led to the emergence of fast oscillations, the
period of which was proportional to approximately several times
the delay. The advantage of using EPSCs modeled as Dirac delta
functions is that the input current is delta-correlated in time,
allowing one to solve the associated Fokker–Planck equation for
the distribution of the membrane voltages in a straightforward
way.

Subsequent work studied the emergence of fast oscillations in
networks of integrate-and-fire neurons with continuous synaptic
kinetics [34]. There the authors determined the frequency of
oscillations analytically and found that it is proportional to both the
rise and decay times of the synaptic response. An extension of that
work showed that for networks of Hogkin–Huxley conductance-
based neurons, the frequency of oscillations also depends on the
single cell dynamics and specifically the membrane time constant
and action potential generation mechanism [35]. This is consistent
with the effect of the synaptic response and single-cell dynamics
on the response latency that we have illustrated above.

Thus the same mechanism which generates an effective delay
in the response of a postsynaptic neuron to a single excitatory

Effective delays D ≈ 5ms for the time it takes to go trough a synapse.
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EXAMPLE OF NETWORK DYNAMICS

Networks with Delays 5
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Fig. 2. Various firing patterns in the conductance-based network. N = 2000 neurons for each
population. Typical voltage traces of single-cell activity are shown to the right of each raster.
Left column (top to bottom): Stationary uniform state, steady bump state and standing wave.
Parameters: KE,0 = 400, KI,0 = 400, KE,1 = (0, 400, 0), KI,1 = (0, 0, 400) , gE = 1.9 µS/cm2,
gI = 5.4 µS/cm2, νext = (500, 500, 5000) Hz and gext = (1.9, 1.9, 0.19) µS/cm2. δ = 0 ms. Right
column (top to bottom): Homogeneous oscillations, oscillating bump state and standing waves.
Parameters: KE,0 = (0, 400, 0), KI,0 = (1000, 400, 1000), KE,0 = (0, 200, 0), KI,1 = (0, 0, 400),
gE = (0, 19, 0) µS/cm2, gI = (19, 54, 19) µS/cm2, νext = (15000, 2000, 15000) Hz and gext =
1.9 µS/cm2. δ = 0 ms.

the spatio-temporal structure of the network activity to the strength and the spatial
dependence of the neuronal interactions.

§3. Dynamics of a rate model with delay

As in the conductance-based model considered above, the rate model consists of
two population of neurons, excitatory and inhibitory. The state of a neuron belonging
to population α = E, I, located a position θ in the ring, is described by a continuous
scalar variable, mα(θ, t), which obeys the dynamical equation:

τ
dmα(θ, t)

dt
= −mα(θ, t)+Φ

(
Iext(θ, t)+

∑

β=E,I

∫
dθJαβ(|θ−θ′|)mβ(θ′, t−D)

)
. (3.1)

where Jα,β(|θ−θ′|) represents the interaction from population β to population α, the
external input to neuron at θ in both populations is Iext(θ, t), and the function Φ(I)
is the input-output transfer function of the neurons in both populations . The delay
D neither depends on the distance between the pre- and the postsynaptic neurons
nor on the nature (E, I) of these neurons.

In order to further simplify the model, we will assume that Jαβ depends only
on β. This is analogous to the relations Eq. 2.3 and Eq. 2.4 for the network model.
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SIMPLIFIED NETWORKS

We look at an empirical approximation of the network by firing rate equations:

τ
dmk(θ, t)

dt = −mk(θ, t) + S
(
Iext(θ, t) +

∑
l=E,I

∫ π

−π

Jkl(θ − θ′)ml(θ
′, t− Dl)dθ′


where

1 mk(θ, t) is the firing rate of population k at position θ

2 S is the f− I curve of the network model (positive, increasing)
3 Dl is the synaptic delay introduced earlier

▶ Delay differential equations (DDE)
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BIFURCATION DIAGRAM OF THE BRUNEL MODEL

[20]. Secondary instabilities of these states are investigated
numerically as are the dynamical patterns to which the
instabilities lead.

I. Stationary bumps.—As J1 crosses the value of two
from below a Turing instability of the SU state to a sta-
tionary bump of activity occurs, SB [Fig. 2(a0)]. The
stability boundary of such bumps can be calculated analyti-
cally in Eq. (1), revealing two mechanisms of destabiliza-
tion. For sufficiently strong local excitatory connectivity, a
rate instability occurs (m ! 1 as t ! 1). For sufficiently
strong inhibition, an oscillatory instability occurs. This
instability may lead to the OU state, or to an oscillatory
bump state, OB, for J1 sufficiently large [Fig. 2(a)].

II. Oscillatory uniform.—Sufficiently strong global in-
hibition (i.e., J0 negative enough), leads to a Hopf bifurca-
tion to an OU state [Fig. 2(b)]. For small D, this Hopf
bifurcation occurs for J0 !"!=#2D$, and the frequency
of the unstable mode at the bifurcation is f! 1=#4D$. The
amplitude of the oscillatory instability grows until the
input current crosses the threshold of the transfer function
from above. The emerging limit cycle thus consists of a
period, e.g., 0< t < T1, in which the input current is
negative and during which m#x; t$ / e"t. If the duration
of this initial period is greater than the delay, T1 >D, then
in the subsequent time period, T1 < t < T1 %D, the solu-
tion will consist of a homogeneous exponential solution
and a particular solution driven by the value of m in the
preceding epoch. The complete limit cycle can be con-

structed by extending this reasoning to solve Eq. (1) for as
many epochs as are required to cover the full period of
oscillation, T. The latter is determined by the condition:
m#T$ & m#0$. Once the limit cycle mlc#t$ has been found,
its stability is determined by considering the ansatz m#t$ &
mlc#t$ % "m0#t$ % "m1#t$ cos#x$, where "m0 and "m1 are
small. The conditions "mi#T$ & #i"mi#0$ yield the
Floquet multipliers #i for i & 0, 1. If D< T " T1 < 2D,
then #0 & 1 and

#1 & e"T
!

1% J1
2
ReD % J21

#R"D$2
8

e2D
"

; (2)

where R & T " T1. The homogeneous oscillations are
stable if j#1j< 1. For #1 & "1, a period-doubling insta-
bility of the spatially heterogeneous mode occurs, leading
to SW in which two distinct regions of the network oscil-
late out of phase with one another [Fig. 2(c)]. Numerical
simulations show that further decreasing J1 leads to addi-
tional instabilities to aperiodic patterns A [Fig. 2(d)]. A
phase instability occurs for #1 & 1. It can be shown that
this condition is met, in particular, for J1 & 2J0, leading to
SW. This condition is also met on an additional curve in the
region J1 > 0. The instability which occurs as one crosses
this line from below leads either to an OB or a SB state,
depending on J0.

III. Traveling waves.—When J1 is sufficiently negative
(J1 !"!=D for small D), the SU state undergoes a bi-
furcation to TW. The profile of the wave can be derived,

FIG. 2. Space-time plots of typical patterns of activity in the
different regions of Fig. 1 shown over five units of time. Left-
hand column from top to bottom: J0 & "80 and J1 &
15; 5;"46;"86 corresponds to OB, OU, SW, and A in Fig. 1.
Right-hand column from top to bottom: J0 & "10 and J1 &
5;"38;"70;"80 corresponding to SB, TW, SW, and A. D &
0:1 and I is varied to maintain the mean firing rate at 0.1. Dark
regions indicate higher levels of activity in gray scale. Symbols
refer to the location of the patterns in the phase-diagram, Fig. 1.
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FIG. 1. Phase diagram of the rate model, Eq. (1), for D & 0:1.
The states are: stationary uniform (SU), stationary bump (SB),
oscillatory bump (OB), oscillatory uniform (OU), traveling
waves (TW), standing waves (SW), lurching waves (LW), and
aperiodic patterns (A). All solid lines have been determined
analytically. Stability lines of other states (dotted lines) have
been determined by numerical simulations. Regions of bista-
bility are indicated by hyphens, e.g., OU-SW. Symbols refer to
the patterns in Fig. 2. (For the case D & 0 see [6], Fig. 13.7.)
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NORMAL FORM THEORY 1/2

The idea is to find a polynomial CHV which improves locally a nonlinear system, in
order to analyze its dynamics more easily.

ẋ = Lx+ R(x;α), L ∈ L(Rn), R ∈ Ck(Vx × Vα,Rn) (1)

R(0; 0) = 0, dR(0; 0) = 0

Theorem 1/2
∀p ∈ [2, k], there are neighborhoods V1 and V2 of 0 in Rn and Rm, respectively, such
that for any α ∈ V2, there is a polynomialΦα : Rn → Rn of degree p with the following
properties:
• The coefficients of the monomials of degree q in Φα are functions of α of class
Ck−q, and

Φ0(0) = 0, dΦ0(0) = 0
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NORMAL FORM THEORY 2/2

Theorem 2/2
• For any x ∈ V1, the polynomial CHV x = y+Φα(y) transforms (1) into the normal
form

ẏ = Ly+ Nα(y) + ρ(y, α)

where Nα : Rn → Rn is a polynomials of degree p
• The coefficients of the monomials of degree q in Nα are functions of α of class
Ck−q, and

N0(0) = 0, dxN0(0) = 0

• the equality Nα(etL
∗
y) = etL

∗Nα(y) holds for all (t, y) ∈ R× Rn and α ∈ V2

• the maps ρ belongs to Ck(V1 × V2,Rn) and

∀α ∈ V2, ρ(y;α) = o(yp)
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AN EXAMPLE

Consider the case L =
[
0 −ω

ω 0

]
, ω > 0.

• In the basis (ζ, ζ̄), ζ = (1,−i): L =
[
iω 0
0 −iω

]
• Write x = y+Φα(y), the change of variable with y = Aζ + Aζ

Lemma

Nα(Aζ + Aζ) = AQα(|A|2)ζ + AQα(|A|2)ζ̄.
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HOW DO WE SHOW THIS? (Nα(Aζ + Aζ) = AQα(|A|2)ζ + AQα(|A|2)ζ̄)

• In the basis (ζ, ζ̄), ζ = (1,−i): L =
[
iω 0
0 −iω

]
• Write x = y+Φα(y), the change of variable with y = Aζ + Aζ
• Use

Nα(etL
∗
y) = etL

∗
Nα(y)

• Write Nα(Aζ + Aζ) = Pα(A, Ā)ζ + Pα(A, Ā))ζ̄ and note that etL
∗
= diag

(
e−iωt, eiωt

)
which gives

Pα
(
e−iωtA, eiωtĀ

)
= e−iωtPα(A, Ā).

• Looking for monomials P(A,B) = ApBq gives the condition ∀t, eiωt(q−p) = e−iωt i.e.
p = q+ 1 and P(A, Ā) = A|A|2q.
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THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

• there a center manifold x = xc +Ψ(xc;µ). Compute Ψ with a Taylor expansion.
• project the dynamics on the center manifold

ẋc = Lxc + Pc(xc +Ψ(xc;µ);µ)

• simplify the dynamics with a normal form which needs to be computed with the
(polynomial) change of variable xc = vc +Φ(vc;µ):

v̇c = Lvc + Nα(vc) + ρ(vc, α)
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THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

• there a center manifold x = xc +Ψ(xc;µ). Compute Ψ with a Taylor expansion.
• project the dynamics on the center manifold

ẋc = Lxc + Pc(xc +Ψ(xc;µ);µ)

• simplify the dynamics with a normal form which needs to be computed with the
(polynomial) change of variable xc = vc +Φ(vc;µ):

v̇c = Lvc + Nα(vc) + ρ(vc, α)

So to compute the normal form N, we have to compute Ψ,Φ? No we can combine the
two computations in a single step. (See book [Haragus-etal:2011])
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HOPF BIFURCATION, THE COME BACK

We consider u̇ = F(u, µ) ∈ R2 (E).

Theorem (Hopf bifurcation)
Assume that F ∈ Ck(R2,R2), k ≥ 5 with F(0, 0) = 0 and L := duF(0, 0). Assume further
that
• the two eigenvalues of L are ±iω for some ω > 0
• the normal form at 3rd order reads Ȧ = A(aµ+ iω + b|A|2) + ρ(A, Ā, µ). Assume
that ar := ℜ(a) ̸= 0, br := ℜ(b) ̸= 0 (see previous slides)

b is called the Lyapunov coefficient.
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HOPF BIFURCATION, THE COME BACK

We consider u̇ = F(u, µ) ∈ R2 (E).

Theorem (Hopf bifurcation)
Assume that F ∈ Ck(R2,R2), k ≥ 5 with F(0, 0) = 0 and L := duF(0, 0). Assume further
that
• the two eigenvalues of L are ±iω for some ω > 0
• the normal form at 3rd order reads Ȧ = A(aµ+ iω + b|A|2) + ρ(A, Ā, µ). Assume
that ar := ℜ(a) ̸= 0, br := ℜ(b) ̸= 0 (see previous slides)

Then, (1) has a supercritical (resp., subcritical) Hopf bifurcation occurs at µ = 0 when
br < 0 (resp., br > 0). And, in a neighborhood of 0 in R2 for sufficiently small µ:
1 If arbr < 0 (resp., arbr > 0), (1) has precisely one equilibrium u(µ) for µ < 0 (resp.,
for µ > 0) with u(0) = 0. u(µ) is stable when br < 0 and unstable when br > 0.

2 If arbr < 0 (resp., arbr > 0), (1) possesses for µ > 0 (resp., for µ < 0) an
equilibrium u(µ) and a unique periodic orbit u(µ) = O(

√
|µ|), which surrounds

this equilibrium. The periodic orbit is stable (resp. unstable) when br < 0 (resp.
br > 0), whereas the equilibrium has opposite stability.

b is called the Lyapunov coefficient. 42



HOPF BIFURCATION, THE COME BACK

We consider u̇ = F(u, µ) = Lu+ R(u, µ) ∈ Rn.

Theorem (Hopf bifurcation)
Assume that F ∈ Ck(Rn × Rp,Rn), k ≥ 5 with F(0, 0) = 0 and L := duF(0, 0) and
• two eigenvalues of L are ±iω for some ω > 0, eigenvectors ζ, ζ̄
• no other eigenvalue has zero real part
• the normal form at 3rd order reads Ȧ = A(aµ+ iω + b|A|2) + ρ(A, Ā, µ). Assume
that ar := ℜ(a) ̸= 0, br := ℜ(b) ̸= 0 (see previous slides)

a = ⟨R11(ζ) + 2R20 (ζ,Ψ001) , ζ
∗⟩

b is called the Lyapunov coefficient.

b =
〈
2R20 (ζ,Ψ110) + 2R20

(
ζ̄,Ψ200

)
+ 3R30(ζ, ζ, ζ̄), ζ∗

〉
with L∗ζ∗ = −iωζ∗ and

−LΨ001 = R01
(2iω − L)Ψ200 = R20(ζ, ζ)

−LΨ110 = 2R20(ζ, ζ̄)
43



INTRODUCTION TO DELAY DIFFERENTIAL
EQUATIONS



INTRODUCTION TO DDE

Let us consider an equation for the membrane voltage potential

V̇(t) = F(V(t);µ) (1)

Information needed to compute the right hand-side at t0:

▶ a scalar, e.g. V(t0).
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DELAYED SYSTEMS [HALE-LUNEL:93]

Let us consider an equation for the membrane voltage potential with a feedback
(τm > 0)

V̇(t) = F(V(t), V(t− τm);µ) (2)

Information needed to compute the right hand side at t0:

▶ a history segment, e.g. V(t), t ∈ [t0 − τm, t0].

⇒ It is an infinite dimensional problem even if V is a scalar.
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DELAY DIFFERENTIAL EQUATION DDE

This suggests to look at (delay D > 0)

{
V̇(t) = F(V(t), V(t− D), µ)
V(t) = ϕ(t), t ∈ [−D, 0]

(DDE)

⇒ Nonlinear stability / Center manifold is difficult to investigate. It is possible but
quite technical, you can have a look at my paper

Veltz, R., and O. Faugeras. A Center Manifold Result for Delayed Neural Fields
Equations. 2013.
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