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OUTLINE



SYNAPTIC TRANSMISSION




ANATOMY OF THE SYNAPSE




OVERVIEW OF NEUROPIL STRUCTURE

Recall...




BAsICS OF (CH EMICAL) SYNAPTIC TRANSMISSION
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DIFFERENT CLASSES OF RECEPTORS

Non-exhaustive list!

Dale’s Law
Neurons have either excitatory or inhibitory action on all their post-synaptic targets.

» Highly stochastic transmission.

Some important receptors:

- Glutamaergic receptors, (neurotransmitter: Glutamate, excitatory)

- AMPA receptor, channel for Na, K, Ca and Viey &~ 0mV
- NMDA receptor, channel for Na, K, Ca and Vyey &~ O0mV. It is voltage-dependent,

channel blocked by Mg.
- GABAergic receptor(s), (neurotransmitter: GABA, inhibitory)
- GABA, receptor, channel for Cl and Vyey &= —90mV

» Ca currents constitute a small proportion 10%



2-STATES MARKOV MODEL OF SYNAPTIC CONDUCTANCE

Write [T] the transmitter concentration, we seek for

Isyn = Gsyn (t) (Vpost - Vrev)
where the conductance follows:

o - [T]
C = 0, gsn(t)=3gsnO(t)
B
» Square pulse shape for [T], amplitude Tmax, fixed duration At.

_ 1

O(t) = Oco + (0(0) — Oo0) e~ - >0
(1) = 0 + (0(0) ~ Ox) R e T U

= 0(At)e™ ", t> At

» Difference of exponentials model

Link to pre-synaptic membrane [Destexhe-etal:94]

Tmax
V, = M



THE AMPA RECEPTOR

R, T R, T R,

Co — 1 — Cy — O
Ry, Ry, R,
8 Rl B,

Dy Dy

@ Two glutamate molecules needed to open the channel (cooperativity).
@ Time course of current determined by Glu-unbinding time-constant
@ Fluctuating number (10-100) attached to the PSD

@ Desensitized states that saturate response — depression

However, it is often simply modeled with:
~0mV

~ =
Lampa(t) = Goe™ /™% | Eaupa —Vimem | Heaviside(t),

Tampa =~ 1 —5ms



THE NMDA RECEPTOR 1/2

Isyn = GnmpaO(t)B(V) - (Enmpa — V)

@ Longer time scales than for AMPA
Q Evwpa =0
@ Partially blocked by Mg, requires depolarization to open

@ Coincidence detector

We have [Jahr-Stevens:90]:

_ [e**]
Vr = 16.13In 155

{ B(V) = W



THE NMDA RECEPTOR 2/2

[Jahr-Stevens:90] Note the sigmoidal curve on the rhs.
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THE GABA RECEPTORS, JUST FOR GABA,... (THERE IS A GABAg)

@ Often found close to the cell body
@ Responsible for fast inhibition

© Current mostly carried by Cl

Q Eous, ~ —80mV

Current approximation like the AMPA one:
leasa, = Goara, O(t) (Ecasa, — V)

with
(t) 7[/'& [GABA]) 7t/7d

where a ~ 5mM~"'ms™", 8~ 0.18ms



SYNAPTIC TRANSMISSION AT EXCITATORY SYNAPSES

Resting membrane
potential During depolarization

@ Binding of Glu opens AMPA leading to depolarization
@ Binding of Glu+sufficient depolarization opens NMDA leading to influx of Calcium

» Then what? What is Calcium for?



AMPA TRAFFICKING

Diffusion on the post-synaptic membrane Imaging of two single fluorescently tagged
AMPA receptors (red), one immobile and co-localized with a synapse, the other freely
moving in the extrasynaptic membrane. Green = presynaptic tag.



THE POST-SYNAPTIC DENSITY (PSD)

Locus of stable receptor + anchor molecules,
[petersen-etal:03,Masugi-Tokita-etal:2007]

Scale bar 100nm



SYNAPTIC WEIGHT DYNAMICS: PLASTICITY




OUTLINE

e Synaptic weight dynamics: plasticity



SYNAPTIC PLASTICITY

Long Term Plasticity was found in 1973 by Bliss-etal.

Definition
The synaptic weight is the amplitude of the post-synaptic membrane potential.

It can be affected by changes in the

@ release probability of neurotransmitter (~ STP)
@ number of release sites

© maximal conductance of AMPA receptor (~ LTP)
Q@ AMPA number (~ LTP)

Q etc



SYNAPTIC PLASTICITY

Long Term Plasticity was found in 1973 by Bliss-etal.

Definition
The synaptic weight is the amplitude of the post-synaptic membrane potential.

It can be affected by changes in the

@ release probability of neurotransmitter (~ STP)
@ number of release sites

© maximal conductance of AMPA receptor (~ LTP)
@ AMPA number (~ LTP)

@ etc

The synapse response displays:

@ facilitation: progressive increase in the weight (last few sec.)
@ potentiation: as facilitation, slower to develop but outlasts the stimulus

© depression: opposite of potentiation



SHORT-TERM DEPRESSION (LASTS FEW SEC.)

Experimental results [Tsodyks-Markram:97]
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SHORT-TERM FACILITATION

[Markram-Tsodyks:98]
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SHORT-TERM PLASTICITY

Frequency dependence
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12 ' 1A

10 \

EPSP,, Amplitude (mV)

i ! | | | \
0 20 40 60 80 100

Presynaptic Frequency (Hz)

Figure 1: Markram-Tsodyks:98
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HEBBIAN LEARNING

The basic mechanism for activity-dependent synaptic plasticity was first formally
postulated

Hebb’s rule (1949)
When an axon of cell A is near enough to excite cell B or repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

Simply restated, when a presynaptic cell and its postsynaptic cell are repetitively
active together, the efficacy of the synaptic transmission between them improves.

22



LTP AND LTD

Experimental support for Hebb'’s rule [Fleming-etal:10]
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» Synaptic weight w;; oc #AMPA

» Synaptic weight wj oc Gampa
How are these changes induced? ?



SPIKE TIME DEPENDANT PLASTICITY

Also called STDP, [Markram-etal:97]
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Often wrongly stated as:

Are~ T dt>0
e { AT dt<0 o = o =l
» Quid frequency, in-vivo results, bAP is not critical...?

» It is static description, what about DS? — Open question...
2%



—

1Pre  2Pre-10 2Pre:50  fPost 2Post-10 2Post-  2Post-  1Pre-  1Pre-
1Pre50 1Pre-20 2Post10 2Post-50
Pre J_J.I_J_l____l__l_l_l__

Post

a b c
1Pre-1Post-10, 1Pre-2Post-10, 1Pre-2Post-50,
300 at 5 Hz. 300 at 5 Hz 300 at 5 Hz
. e
pre o o
Oms e Test 0ms Soms
 Control
€ . ! ° e
N 2r 1y 2%, 20y v
35 1| !
£g o Ve
Sl 1 ol 1y
£E° o2 0 1020 30 O]
Time (min) Time (min) Time (min)
e f
1Pre-2Post-10, 2Pre-10, 2Post-1Pre-50,
00 at 5 Hz. 300 at5 Hz 300 at 5 Hz
+ L-689560 10ms
10ms
- 50ms
E2
E2r 2 o} — 1 5. 2 .
ge { v ¥ A oy
B3 1| o, g, 1|
&8 o o
§ 0 10 20 30 0 10 20 30 0 10 20 30
Time (min) Time (min) Time (min)
] h i
2Post-1Pre-20, 2Pre-50,
300at5Hz 900213 Hz aT2. ' ° - Tost
1L 150ms g€ O Control
10ms 22 |
= I e n
20ms - ) g g1 i
. 2 . 8
G2 1 U g
2 - 1 > W80t oo
i} of,— polbolibol-1
i oL G5gggE pep
~10 0 10 20 30 SREGE VT T
Time (min) Time (min) geges 23

I.P.J\,,WJ_J\_‘LLLALJ

Average response,

LTP

Average potency

= Former PhD Student Y. Rodrigues tackles this with a PDMP.
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MODEL OF [RODRIGUES-ETAL:23]
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= Former PhD Student Y. Rodrigues tackles this with a PDMP.

26



SUMMARY OF IMPORTANT PLASTICITY RESULTS

Shouval-etal:10

High-frequency stimulation (LTP)

Presynaptic stimulation:  ummmWMWMWI 100 Hz, 15

Postsynaptic activity: - not controlled, not measured

Low-frequency stimulation (LTD)
Presynapticstimulation: | | | 1 1Hz 9005

Postsynaptic activity: - not controlled, not measured

Strong depolarization (LTP)
Presynapticstimulation: 1 111 1Hz100s
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MECHANISMS OF LONG-TERM PLASTICITY

METTRE TIGARRET ET RESULTATS DE YURI [Kotaleski-etal:10]

Glutamate — [mGIR]
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[Depotarization|=—_, [VDCq] vocd —

3 > R~
N

BRAF|

\ - Induced by Calcium entry (NMDA/VDCC)
- Cascade of reactions that affect PSD
'\ - Change Gampa (Phosphorylation)
- Add/Remove AMPA receptors on the PSD

i — - Structural change of spine size (few sec.)

0Go, PDEA
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Proteins involved: Ca — CaM — - - -

- Kinases (CaMKII,PKA,...)

- Phosphatases (calcineurin, PP1,...) 28



MEAN FIELD MODEL FROM A NETWORK OF
COUPLED HH NEURONS




MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

av
CE ==l = INa — Ik — Irec aF Iext

spread on a 1d chain (variable #) with periodic boundary conditions

@ N excitatory neurons

@ N inhibitory neurons
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

av
CE ==l = INa — Ik — Irec aF Iext

spread on a 1d chain (variable #) with periodic boundary conditions
@ N excitatory neurons

@ N inhibitory neurons

© J.s(0 —6")/N: probability of a connection from a neuron at 6’ in population 3 to a
neuron at @ in population «
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

av
CE ==l = INa — Ik — Irec aF Iext

spread on a 1d chain (variable #) with periodic boundary conditions

@ N excitatory neurons
@ N inhibitory neurons

© J.s(0 —6")/N: probability of a connection from a neuron at 6’ in population 3 to a
neuron at @ in population «

Q aB=El
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 1/2

The neurons are described by a Hodgkin-Huxley type

av
CE === INa — Ik — Irec aF Iext

spread on a 1d chain (variable #) with periodic boundary conditions

@ N excitatory neurons
@ N inhibitory neurons

© J.s(0 —6")/N: probability of a connection from a neuron at 6’ in population 3 to a
neuron at @ in population «

Q o, 8=ElI
@ J.5(0—0")is 2m-periodic.

Assume
ja(r) == ja,O +Ja,‘1 cos(l’)
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MOTIVATION, NETWORK ARCHITECTURE FROM BRUNEL-ETAL:05, 2/2

The recurrent connections between neurons are AMPA/GABA (a — 3):

’rec,r’ - _gaﬁsa,/(t) (V/' - Esyn,a)
If there is a connection between i and j, we use AMPA current:

(e*(t*f/)/‘l'z _ e*(t*i,)/‘Fw)

where t; is the spike from neuron j

31



SPIKE INITIATION TIME

Link between two neurons.
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Effective delays D ~ 5ms for the time it takes to go trough a synapse.
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EXAMPLE OF NETWORK DYNAMICS

(b)

mmmmmm” Y;)o :280 100 L300 0ﬂ ! ” ll!)(i 1 l i : ’2;0 0 100 200
tlme (ms) time (ms) time (ms) time (ms)

OM—*—&{

33



SIMPLIFIED NETWORKS

We look at an empirical approximation of the network by firing rate equations:

7dmkd(t0 t) = 7mk(97t) + S(/ext 0 t I / jfe 979 m[(e t— D)de)

where

@ m(0,1) is the firing rate of population k at position 6
@ Sisthe f— I curve of the network model (positive, increasing)

© D, isthe synaptic delay introduced earlier

» Delay differential equations (DDE)

34



BIFURCATION DIAGRAM OF THE BRUNEL MODEL
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NORMAL FORM THEORY




NORMAL FORM THEORY 1/2

The idea is to find a polynomial CHV which improves locally a nonlinear system, in
order to analyze its dynamics more easily.

X =Lx+R(x; ), Le L(R"), Re C*(Vx x Vo, R") (1)

R(0;0) = 0, dR(0;0) =0

Vp € [2,R], there are neighborhoods V; and V, of 0 in R" and R", respectively, such
thatforany a € V,, there is a polynomial ®,, : R" — R" of degree p with the following
properties:
The coefficients of the monomials of degree g in ®,, are functions of a of class
ct=9 and
®(0) = 0, ddg(0) =0
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NORMAL FORM THEORY 2/2

For any x € Vj, the polynomial CHV x = y + ®,(y) transforms (1) into the normal
form

y =L+ Na(y) + p(y, @)
where N, : R” — R" is a polynomials of degree p
The coefficients of the monomials of degree g in N,, are functions of « of class
9 and

No(0) = 0, dxNg(0) =0

the equality | Na(e™"y) = e N, (y) | holds for all (t,y) € R x R" and a € V,

the maps p belongs to C*(Vx x V,,R") and

Vo € V2, p(y; ) = o(y")

38



AN EXAMPLE

0 —w

Consider the case L = [
w 0

},w>0.

- In the basis (¢, &), ¢ = (1, —i): L= {"*’ 0 }
0 —lw
- Write x = y + ®,(y), the change of variable with y = AC + AC

Lemma

Na (AC +AC) = AQa(IA*)¢ +AQa (AI")C.

39



How Do WE SHOW THIS? (N, (A¢ 4 AC) = AQq(JA])¢ + AQa(JAIP)C)

. = . jw 0
- In the basis (¢,¢),¢=(1,—i): L= {O iw]
- Write x = y + ®,(y), the change of variable with y = AC + AC
- Use
Na(e"'y) = e Na(y)
- Write Na(A¢ + AC) = Pa(A,A)C + Pa(A,A))C and note that e = diag (e’f“t, ef“t>
which gives
Py, (e*’“A,e’“tZ\) — e P, (A, A).

- Looking for monomials P(A, B) = APBY gives the condition Vt, e“!4=P) = g~ ¢
p=q+1and P(A,A) = AJA]%.

40



THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

41



THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

- there a center manifold x = xc + W(xc; ). Compute W with a Taylor expansion.
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THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

- there a center manifold x = xc + W(xc; ). Compute W with a Taylor expansion.
- project the dynamics on the center manifold

Xe = WXc + PE(Xc + W(xc; p); )
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THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

- there a center manifold x = xc + W(xc; ). Compute W with a Taylor expansion.
- project the dynamics on the center manifold

Xe = WXc + PE(Xc + W(xc; p); )

- simplify the dynamics with a normal form which needs to be computed with the
(polynomial) change of variable xc = vc + ®(ve; p):

Vc = Lvc + Na(Vc) I P(VQ a)
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THE MACHINARY

Consider a continuous dynamical system with a local bifurcation:

- there a center manifold x = xc + W(Xc; ). Compute W with a Taylor expansion.

- project the dynamics on the center manifold
Xe = Lxc + PC(XC aF "U(XC; H); ,u)

- simplify the dynamics with a normal form which needs to be computed with the
(polynomial) change of variable xc = v + ®(v¢; p):

Ve = Lve + Na(VC) ar p(Vc, a)

So to compute the normal form N, we have to compute ¥, ®? No we can combine the
two computations in a single step. (See book [Haragus-etal:2011])
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HOPF BIFURCATION, THE COME BACK

We consider 0 = F(u, u) € R? (E).

Assume that F € C*(R?, R?), k > 5with F(0,0) = 0 and L := d,F(0,0). Assume further
that

the two eigenvalues of L are +iw for some w > 0

the normal form at 3rd order reads A = A(au + iw + b|A]?) + p(A, A, i). Assume
that a, := R(a) # 0, b, := R(b) # 0 (see previous slides)

b is called the Lyapunov coefficient.

42



HOPF BIFURCATION, THE COME BACK

We consider 0 = F(u, ) € R?  (E).

Assume that F € C*(R?,R?), k > 5 with F(0,0) = 0 and L := dyF(0, 0). Assume further
that

the two eigenvalues of L are +iw for some w > 0
the normal form at 3rd order reads A = A(au + iw + b|A]?) 4+ p(A, A, i). Assume
that a, := R(a) # 0, b, := R(b) # 0 (see previous slides)
Then, (1) has a supercritical (resp., subcritical) Hopf bifurcation occurs at i = 0 when
br < 0 (resp., by > 0). And, in a neighborhood of 0 in R? for sufficiently small
@ Ifabr < 0 (resp., arbr > 0), (1) has precisely one equilibrium u(u) for u < 0 (resp.,
for u > 0) with u(0) = 0. u(u) is stable when b, < 0 and unstable when b, > 0.
Q Ifarb, < 0 (resp., arb, > 0), (1) possesses for u > 0 (resp., for 1 < 0) an
equilibrium u(x) and a unique periodic orbit u(x) = O(+/]u|), which surrounds
this equilibrium. The periodic orbit is stable (resp. unstable) when b, < 0 (resp.
br > 0), whereas the equilibrium has opposite stability.

b is called the Lyapunov coefficient. w



HOPF BIFURCATION, THE COME BACK

We consider U = F(u, ) = Lu + R(u, n) € R".

Assume that F € C*(R" x RP,R"), k > 5 with F(0,0) = 0 and L := d,F(0,0) and
two eigenvalues of L are +iw for some w > 0, eigenvectors ¢, ¢
no other eigenvalue has zero real part

the normal form at 3rd order reads A = A(au + iw + b|A]?) + p(A, A, u). Assume
that a, := R(a) # 0, b, := R(b) # 0 (see previous slides)

a = (Ru(¢) + 2Rz (¢, Woo1) ,¢)
b is called the Lyapunov coefficient.
b = (2Ra0 (¢, Wio) + 2Ra0 (¢, Waoo) + 3Rs0(¢, ¢, €), ¢°)
with L*¢* = —iw¢* and
—LWoo1 = Ro
(2iw — L)Wa00 = Ra0(¢, )
—LWig = 2Rx0(¢, €)
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INTRODUCTION TO DELAY DIFFERENTIAL
EQUATIONS




INTRODUCTION TO DDE

Let us consider an equation for the membrane voltage potential

Information needed to compute the right hand-side at to:

» a scalar, e.g. V(to).
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DELAYED SYSTEMS [HALE-LUNEL:93]

Let us consider an equation for the membrane voltage potential with a feedback
(Tm > O)

Information needed to compute the right hand side at to:
> a ,e.g. V(t),t € [to — 7m, to].

V(#)
\Z

T T

—Tm 5 = Tz t 0
= Itis an infinite dimensional problem even if V is a scalar.
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DELAY DIFFERENTIAL EQUATION DDE

This suggests to look at (delay D > 0)
V(t) = F(V(t),Y(t—D),p)
{ W) =o@), te[-p,0 P

= Nonlinear stability / Center manifold is difficult to investigate. It is possible but
quite technical, you can have a look at my paper

Veltz, R, and O. Faugeras. A Center Manifold Result for Delayed Neural Fields
Equations. 2013.
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