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NEURAL FIELDS MODELS




OUTLINE

@ Neural Fields models
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NEURAL FIELDS

- Mesoscopic model of bounded
cortical area Q
- Continuum of populations

- Populations communicate via
horizontal connections through
gray matter with delays

external
input

- Population activity: vector V(x, t)
of p components, one component
per population

Iezl,,‘j (y7 t)
white matter

See [Bressloff-Kilpatrick:09], [Venkov-Coombes:07], [Brunel et al. :05], work of Atay,
Hutt

See also the book [Coombes-et al. 14]. Neural Fields,

Can we write equations for V(x, t)?



LOCAL MODELS FOR p INTERACTING NEURAL MASSES

@ cach neural population i is described by its average membrane potential V;(t) or by its
average instantaneous firing rate v;(t) with v;(t) = S;(V;(t)), where S; is sigmoidal:
L
14+ e_Ur(X_Gr)
o is the nonlinear gain and 6; is the threshold

Si(x)

Recall the f-I curve from Lecture 2.
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LOCAL MODELS FOR p INTERACTING NEURAL MASSES

@ cach neural population i is described by its average membrane potential V;(t) or by its
average instantaneous firing rate v;(t) with v;(t) = S;(V;(t)), where S; is sigmoidal:
L
14+ e_Ur(X_Gr)
o is the nonlinear gain and 6; is the threshold

Si(x)

Recall the f-I curve from Lecture 2.

@ a single action potential from neurons in population j, is seen as a post-synaptic potential

PSPj(t — s) by neurons in population i (s is the time of the spike hitting the synapse and t
the time after the spike)

@ the number of spikes arriving between t and t + dt is vj(t)dt, then the average membrane
potential of population i is:

t
Vi(t) = Z/Psp,-,(r— $)S;(V;(s))ds

Ity
t
vi(t) =S Z/PSPU(t — s)y(s)ds

A



THE VOLTAGE-BASED MODEL

It is based on the hypotheses:

@ the post-synaptic potential has the same shape no matter what presynaptic
population j caused it, this leads to
PSP,‘j(t) = W,‘jPSP,‘(t)
w; is the average strength of the post-synaptic potential and if w; > 0 (resp.
w;; < 0) population j excites (resp. inhibits) population i
@ if we assume that PSP;(t) = e~/7iH(t) or equivalently

3PP | psp 1) = s(t)
dt
we end up with a system of ODEs:
dvi(t)
Tj ( ZW// + ’ext( )

which we rewrite in vector form:

V= —LV+ WS(V) + lex
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It is based on the hypotheses:
@ the post-synaptic potential has the same shape no matter what presynaptic
population j caused it, this leads to
PSPji(t) = w;PSP;(t)
w;; is the average strength of the post-synaptic potential and if w; > 0 (resp.

w;; < 0) population j excites (resp. inhibits) population i
@ if we assume that PSP;(t) = e~"7iH(t) or equivalently

PR | pspr) = a(t)
we end up with a system of ODEs:
dvi(t
Ti ( ) + V/ Z Wu + /ext( )

which we rewrite in vector form:
V= —LV+ WS(V) + lex

= the synapses are very short lasting, the dominant time constant is the
membrane time constant



THE ACTIVITY-BASED MODEL
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THE ACTIVITY-BASED MODEL

It is based on the hypotheses:
@ the same shape of a PSP depends only on the presynaptic cell, this leads to
PSP,‘I'(I) = W,‘jPSPj(t)

@ we also suppose that PSP;(t) = e~/7iH(t) and we end up with a system of ODE

. dAO;Et) +A(t) =S (Z,: wiAi(t) + /"m(t)>

which we rewrite in vector form:

A= —LA + S(WA + lex)

= the synapses are long lasting, the dominant time constant is the membrane
time constant



NEURAL FIELDS MODELS

@ idea: combine local models to form a continuum of neural fields
@ QCRY d=1,2isa piece of cortex

@ We note V(r, t) (resp. A(r, t)) the state vector at point rin Q

@ We introduce the p x p matrix W(r, T, t)

Voltage-based neural fields equations

% = —LV(r,t) /W (r, 7, 1)S(V(T, £))dr + lexe(r, t)

Activity-based neural fields equations
dAért, ) _ —LA(r,t) +S ( / W(r, T, )A(F, £)dF + lex(r, t))
Q

(/QW(r,F,t)A( ) Z/Wu(r T, )A;(F, t)dF




REMARKS

- when d = 1, most widely studied because of its relative mathematical simplicity
but of limited biological interest

- when d = 2, more interesting from a biological point of view (the thickness is
neglected), received less interest because of the computational difficulty

- unbounded domains: Q = R? raises some mathematical questions and
unrealistic

- number of populations: p =1or 2
- the sigmoid function can be approximated by a Heaviside function

- W(r,T,t) is often chosen symmetric and translation invariant:
W(r,r,t) = W(r —T,t)

- in the case n = d =1, the connectivity function has a “Mexican-hat shape”

- features can be taken into account: V(r, 8, t) in the case of orientation



CAUCHY PROBLEM FOR NFE

Q is an open bounded set of RY. We define F = [?(Q2, RP) (Hilbert space). We can
rewrite equation (1) in a compact form (function V(t) is thought of as a mapping
V:R" — F)

&= —LV+G(t,V), t>0 a)
V(O) =Vo e F

The nonlinear operator G is defined by:

G(t,V)(r, 1) :/QW(nF, BS(V(F, 1)) + lex(r, t), Vr € Q

If the following two hypotheses are satisfied:
W € C(RT, L>°(Q?,RP)) and is uniformly bounded in time,
the external input lex € C(R*, F)

then for any function Vo € F there is a unique solution V defined on R and contin-
uously differentiable of the initial value problem (1).



ELEMENT OF THE PROOF

- forallt > 0,G(t,") : F — F, (well-posedness of the problem)

- G:(t,V) — G(t,V) is continuous in (t,V)

- IG(t, V) — G(t,V2)|| = < KDSm sup ||W(t)|| ;o [[Vi — Va|| = forallt > 0 and V4,V € F
teR*

where DSy, = sup [|S]]|, (Lipschitz continuity of R with respect to its second
i=1---p
argument, uniformly with respect to the first)

- application of the Cauchy Lipschitz theorem in Banach spaces



MEAN-FIELD LIMITS, MCKEAN-VLASOV 1/2

- NFE as mean limit of Hawkes process [Chevallier et al. 17] (Point process).

- [Lucon et al. :18] Limits of FitzHugh-Nagumo neurons
F(x,y) = (X - é —y, t(x+a— by)) with network:

N
X = | 6F (X)) — K | X — %Zx,,t dt + v20dB; i =1,...,N,t >0
J=1

to
dX: = (6F (X:) — K(X: — E[X])) dt + V20dB;, t > 0

- [Crevat et al. 19] similar with space but without noise. The limit is

3
V:VfV?fWJrE,,O(V), W=V+a—bw

with £,(V) := —(V % p)V + W x [pV]



MEAN-FIELD LIMITS, MCKEAN-VLASOV 2/2

Without space

- [de Masi et al. 15] spiking network
X;V”. = Xg’i - jot Xé\l’fds = fot fooo XISVL/‘I{ZSf(XéVJ)}N/(dS’ dZ)
- i o S5 Vg W5, 2)

with limit X, = Xo + fg E(Xs) — Msds — [g [5° Xs— 1<, _3N(ds, 02)
- [Cormier et al. 19] spiking network
t t [e’s}
X = Xo +/O E(Xs) + b(Xs)ds — /O /O X5 s,y N(ds, )

- Networks on random graphs, with adaptation, ...

What do you notice?



STRUCTURE OF PRIMARY VISUAL CORTEX (V1)




OUTLINE

@ structure of primary visual cortex (V1)

@ Anatomy



ANATOMY OF THE VISUAL PATHWAY

field view

field hemisphere

eye




RETINOTOPY, FROM TOOTELL-1988 (MONKEY)

Z — log (z+ 0.33) — log (z + 6.66)

stimulus

carte d'activation corticale



CORTICAL LAYERS ORGANIZATION OF V1 (PURVES)

(David Hubel and Torsten Wiesel, Nobel 1981)
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METHODS

OPTICAL IMAGING

pA-N =3

10,000 V cm-1

E=

Y
o}
£
5]
S
2
g

Visual stimulator

Movie display

19



OPTICAL IMAGING: METHODS

Orientation columns, [Bosking et al. 97]
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ORIENTATION COLUMNS

Closer look, [Ohki et al. 06] (cat)

Pinwheel points are not an averaging artifact. Selective cells (1,034 / 1,055).
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PLASTICITY OF REPRESENTATION

From [Dragoi et al. 2000] (Cat)

B

CONTROL
A0 = pixel orientation - adapting orientation
Control Adaptation Recovery

AB=-22.5°

‘ ADAPTATION
RECOVERY Sy - 70=22.5°
57" 90°
\\ \ /P

05mm P

ADAPTING ORIENTATION
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LINK FUNCTION - ANATOMY

Long range connections [Bosking:1997] [Angelucci:2002]

macaque

tree shrew
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ANESTHETISED CAT, SPONTANEOUS ACTIVITY

A bit controversial, [Kenet et al. 03]

a b Spontaneous € Evoked

Very important question: is the response modulated by the cortex or strongly
generated by the cortex?

Res = F(linat) V.S Res = F(Res, €lar).
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A CLOSER LOOK AT ORIENTATION SELECTIVITY

From [Sclar et al. 82] and [Nauhaus et al. 08]
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APPLICATIONS OF NEURAL FIELD MODELS




OUTLINE

e Applications of Neural field models
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RING MODEL OF ORIENTATION: EXPERIMENTAL FACTS
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RING MODEL OF ORIENTATION: MECHANISM

retina LGN hypercolumn
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MEXICAN HAT CONNECTIVITY

Goal: reduce to one population.

Consider two populations E/I

(TE% + 1) Ve = Jee- Se(Ve) — Ja - Si(Vi) + le
(nZ+1)V Jie - Se(Ve) + 1y

- Neglect Jj
- Gaussian kernels
- Inhibition is recruited S;(Vi) = aV)
Then
(e +1) Ve = <JEE —au 'j/E) ~Se(Ve) +le —ader - 1)
J-Se(Ve) +1

30



MEXICAN HAT CONNECTIVITY

31



MOTIVATION FOR THE RING MODEL: SINGLE POPULATION ON Q = S’

- One population with Mexican hat connectivity
- V(0,t) = [ rv(r,0,t)dr

Then we can find a Ring Model approximation for V.

32



RING MODEL OF ORIENTATION TUNING: EQUATION

We consider the following equation:

/2
el (de D v, 1)+ /j(e 6')s(V(e, t))di+ el(8)
—7/2

where 7 is a temporal synaptic constant (r ~ 10ms), J(6 — 6") is a connectivity function
(excitatory/inhibitory) and S is the sigmoidal function:

1
) = e
1(9) is an input coming from the LGN given by:
1(0) =1— B+ Bcos(2(0 — Ou))

Moreover, we take the simplest possible connectivity function:

J(0) = =1+ J1 cos(20)

33
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ERMENTROUT-COWAN MODEL

We consider the following equation:

dv(r, t)
Tt

= —V(r,t) +/W(r, r)S(V(r,t))dr
R2

where 7 is a temporal synaptic constant (1 ~ 10ms), W(r,¥) = w(|[r —7||) is a
connectivity function (excitatory/inhibitory) and S is the sigmoidal function:

1
Cl4e otk ek

S(x)

We choose a “Mexican-hat” connectivity function:

2 2

A -5 A -5

w(r)y=—e %1 — —e %
g1 (o]
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GEOMETRIC VISUAL HALLUCINATIONS: REDRAWN
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Figure 2. (a) Funnel and (#) spiral hallucinations generated
by LSD. Redrawn from Oster (1970
Figure 1. (a) ‘Phosphene’ produced by deep binocular
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GEOMETRIC VISUAL HALLUCINATIONS: THEORY

]

Jll
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BRESSLOFF-COWAN-GOLUBITSKY-THOMAS-WIENER MODEL

We consider the following equation [Bressloff-etal.:01]:

/2
P0G —V(r,e,t)+/ / W(r, 6]F. 6)S(V(F. o', £))dF 22
7r

R2 —7/2

where 7 is a temporal synaptic constant (r ~ 10ms), S is the sigmoidal function:
S(¥) = — % and
W(r, 01, 0') = J(0 — 0')3ez + B (1 = 8¢) Wiaer — 7,6)

N
T+e—x+k

- for 8 = 0, we recover the Ring Model of orientation tuning
- if V(r,0,t) is independent of 6 we recover the Ermentrout-Cowan model

- we will try to infer some properties from the case 8 = 0 to the case 0 < 8 <« 1and in the
same time we will use similar method as for the Ermentrout-Cowan model

)
Jan
N
" lateral connections
~d. O L
‘hypercolumn /‘>\ ~—




ANOTHER NETWORK MODEL OF THE VISUAL CORTEX AREA V1

We write the equations for the average membrane potential V(x) of neurons at
position x € Q V1 (see [Veltz-etal:15]):

Td\é!(t ) = —V(x)+ /Qj(x7 Y)S (V(y)) dy + ltnai(X)

- Qs a piece of visual cortex, open bounded.

- Sis a sigmoid function, bounded, increasing

* linar(X), input from the thalamus, here = 0

- J(x,y) is the connection strength between neurons at positions x and y
- Synaptic/Propagation delays neglected.

= Note that we have lumped many populations in an equation for a single
population!

39



CONNECTIONS MODEL FOR VISUAL CORTEX

See [Bressloff:03]
J(X7 y) = /(oc(”x - y”) + Ejlat(x7 y)

Local connections
- Jioc is a difference of Gaussians
- Translation invariance on cortical plane (see next)

- Gradient system if e = 0

Long-range connections, symmetry-breaking term
Jir(%,Y) = Gog (8(X) = 6(Y))o (X, R—2000 (X — V)
- Anisotropy function Jo(x) = exp — ((1— x)Xi +X3) /2075, X € [0,1]
@ x > 0 Tree Shew
@ \ = 0 Macaque

40



EXAMPLES OF PO MAPS, TILINGS OF € 2/2

The PO map 6 defines a tiling of Q (or R?), characterized by its wallpaper group
(invariance group of ).

2
a) !

B

(NI
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BIFURCATION DIAGRAM, SQUARE CASE, ¢ = 0

V= Lo VI

0.30 i i i ; i i
1.040 1.045 1.050 1.055 1060 G G, 1.065 1.070 1.075
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GRID CELLS MODEL 1/2

[Burak-Fiete 2009] We consider the following equation:

TdA(drtiv t) =—Ar,t)+S (Z W(rj, r)A(r), t) + lexe(ri, t))

J

- Inverted mexican hat function G
* W(r;,1r;) = G(r; — r; — leg)), all inhibitory

* lext(ri) = A(xi) (1 + ey, -v)

0000 | —— . -
\ /

!

—0005

~0010 -

-0015
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GRID CELLS MODEL 2/2

128

46



FLICKERING STIMULUS AND HALLUCINATIONS

3.0
2.5

2.0

Amplitude

85 110
Period (msec)

S(t) = Asin(2nt/T) 47



STUDY OF A 2D NEURAL FIELD MODEL OF
SIMPLE VISUAL HALLUCINATIONS




SETTING OF THE MODEL

= Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.
The membrane potential V(x,t) of the population at location x € R? satisfies the
equation

def

V(x, 1) = =V(x, 1) /HIX—VII)SO[UV(V Dldy = (=V+1-So(uV))(x)  (2)

d
Tdt
where So(x) = six + 2x* 4+ 2x> + -+ is C bounded and such that S,(0) = 0.

49



SETTING OF THE MODEL

= Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.

The membrane potential V(x,t) of the population at location x € R? satisfies the
equation

T%V(x, £) = —V(x, t)+/Rzl(\|xfy||)So [oV(y, ] dy Z (—V+]-So(uV))(x) ()

where So(x) = six+ 2x* 4+ 2x> 4+ -+ is C bounded and such that S,(0) = 0.
We note that V = 0 is an equilibrium and we rewrite (2) as 2V = AV + R(V, x1) with

A=—ld+osi), R(V,u)=]-So((oc+p)V) —ocsi) - V.
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SETTING OF THE MODEL

= Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.

The membrane potential V(x,t) of the population at location x € R? satisfies the
equation

def

TEV(X,’S) V(x,t) /J Ix = yl)So [eV(y, )] dy = (=V +) - So(uV))(x) ~ (2)

dt
where So(X) = 51X + 2x* + 2x° + - -+ is C’ bounded and such that So(0) = 0.
We note that V = 0 is an equilibrium and we rewrite (2) as sz AV + R(V, 1) with
=—ld+ocsi), R(V,p) =1)-So((oc + p)V) — acsi) - V.

Hence, we perform a perturbation of V = 0 around the parameter value o = o, that
we shall precise later.
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ASSUMPTIONS REGARDING THE CONNECTIVITY

We make the following assumptions concerning our problem (2).

- we assume that J € H'(R?) for regularity of the nonlinearity
- we assume that J € L'(R?) to be able to perform Fourier transforms.

This implies that J € L>°(R?) by Sobolev embedding theorems.

50



EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Te - V(x) = V(x — 1),

of rotations

cosf  sinf
Ro - V(x) = V(R_ Ry =
0 V() (R—ox), o <— sinf c059> '

and of reflections

1 (1 o0
S-V(x) = V(S x), S(O _1).
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EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Te - V(X) = V(x — t),
of rotations

Ro-V(x) = V(R_sx), Ry = co-sﬁ sin 6 7
—sinf cos@

and of reflections

0 -1

S-V(x)=V(S'x), S= (1 0 ) .

These transformations raise an issue in view of the application of the center manifold
Theorem. Why?

51



EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Te- V(X) = V(x — 1),
of rotations

—sinf cosf

Ro - V(x) = V(R_ox), Ry = < cosf  sin 9) 7

and of reflections

SV(X) = V(S x), S= (; _01>

These transformations raise an issue in view of the application of the center manifold
Theorem. Why?

= if U(x) is in the kernel kerA, then its R?-orbit t — 7¢ - U gives an infinite center part
3, (A). Hence, we need to reduce the symmetry group in order to bypass this difficulty.
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EUCLIDEAN GROUP AND LATTICE

To circumvent this issue, we further assume that V has some periodicity. More
precisely, we define a planar lattice £ as a set of integer linear combinations of two
independent vectors [ and [

£ = {mb +nb, m,n € Z}.

It forms a discrete subgroup of R%.

52



EUCLIDEAN GROUP AND LATTICE

To circumvent this issue, we further assume that V has some periodicity. More
precisely, we define a planar lattice £ as a set of integer linear combinations of two
independent vectors [ and [

£ ={mh +nb, m,nez}.

It forms a discrete subgroup of R?. To each lattice, we associate a dual lattice £*
generated by two linearly independent vectors k; and k, that satisfy k; - [j = d;

L£* = {nky + mky, m,n € Z}.

The largest subgroup of O(2) which keeps the lattice invariant is called the holohedry
of the lattice. There are 3 lattices in the plane as summarized in the next table.

Name Holohedry Basis of £ Basis of £*

Square D, [ =(1,0),5=(0,1) k1 = (0,1), R, = (1,0)
Rhombic D, L =(1,—cotf), b = (0,cotd) | ky = (1,0), k, = (cos,sin0)
Hexagonal Ds b= (25,15 =(%,0) k= (0,1), k= (%, -1)
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REDUCTION OF SYMMETRIES 1/2

= We look for solutions V of (2) which are doubly periodic on the square lattice with
basis [, = k = (1,0) and L, = k, = (0, 1).

We require that V(x 4 1) = V(x) for all | € Lsquare and x € R?.

53



REDUCTION OF SYMMETRIES 1/2

= We look for solutions V of (2) which are doubly periodic on the square lattice with
basis [, = k = (1,0) and b, = k, = (0, 1).
We require that V(x + 1) = V(x) for all | € Lsquare and x € R%. It gives an equation on

the domain (0,1)> Z D of the lattice:

V=—V+7J-So(uV) = AV + R(V, 1)

whereJ- U= [,](- —y)U(y)dy and ] of I+ D).

leL

J is doubly periodic.
J € LX(D) since J € L'(R?).
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REDUCTION OF SYMMETRIES 2/2

= Reduction of the symmetry group of the equations.

- The group of spatial translations is now isomorphic to the torus T? = R?/Z°.

- The model is also symmetric with respect to the transformations that leave the

basic structure invariant i.e. dihedral group D4 = (R4, S) generated by
R d:efR,r/z, and S which act on the membrane potential as: R - V(x,y) = V(y, X)

and S-V(x,y) = V(x, —y).
The full symmetry group is then:

Gsg = Dy x T°.
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FUNCTIONAL SETTING

We wish to apply the CMT in a Hilbert spaces setting for simplicity. Hence, we consider
the space of periodic square integrable functions

X = Léer(D)
where D = (-1, %)2 In order to have a differentiable reminder R and to be able to
perform Taylor expansion, it is convenient that the domain of R is a Banach algebra.
This is the case for example when we consider the Sobolev space of periodic functions

Z = Hpe (D).

The Cauchy problems is formulated with A = —id 4 ucsi) € £(Z, X) and
R(V, 1) =T - So(pV) — uesi) - u € C°(Z x R, X).

Lemma

Assume that 0 € X(A). Then, the neural fields equations (2) have a parameter de-
pendent center manifold M(u).
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STATIC BIFURCATION

We now assume that (2) features a static bifurcation, meaning that Ec = ker A # {0}.
More precisely, we assume that

2
ker A = {z = Zz,ez”’kf"‘ I CCoy Z € (C} cZ
j=1
which is a 4-dimensional space. Note that it is possible to have an 8-dimensional
space by carefully choosing the eigenvectors. This condition sets the value o of the
stiffness parameter, namely, we set

oc= inf {3ke L* 1= Smjk}.

og€ERL

Remark

In practice, we can apply the CMT to every o such that 1 = s,aji for some k € £*.
We call these os bifurcation points of the Cauchy problem. However, the bifurcation
points larger than o will generally lead to unstable trajectories which is why we focus

on o¢ here.
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EQUIVARIANT VERSION OF CMT AND NFT

We assume that there is there is a linear operator T € £(X) N L(Z) which commutes
with the vector field:

TA = AT, TR(u) = R(Tu).

We further assume that the restriction To of T to the center subspace & is an isometry.
Under the assumptions CMT, one can find a reduction function W which commutes
with T, i.e., TW(ug) = W(Touo) for all up € &, and such that the vector field in the
reduced equation commutes with Ty.

If we further assume that there is an isometry T € £(R") which commutes with A
and R, then the polynomials ¢, N commutes with T.

57



NORMAL FORM OF THE BIFURCATION

The normal form at order three associated with the 4-dimensional space of the Gsg-
equivariant problem satisfies:

=2 (a +ﬁ\Z1|2 +’Y|Zz|2)
5 =2 (a+ Bzl +2)

where a, 3,v € R.
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STRIPES OR SPOTS?

Close to the bifurcation point o = o¢, we have V(x, t) = vo(x, t) + W(vo(x, t), u). The
above normal form has equilibria (0, 0), (Zst, Zst), (Zsp, 0), (0, Zsp) with opposite stability
where zst, Zsp € R.

The ODE - NF is easy to study with polar coordinates for example. One then finds
Vspot(X, Y) = Zspe® ™  z4,e® ™V 4 c.c. = 225 (cos(27x) + cos(2my))

or
2imhix

Vstripe(X, ) = Zst€ C.C. = 2Zs; cos(27X).
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STRIPES OR SPOTS?

Close to the bifurcation point o = o¢, we have V(x, t) = vo(x, t) + W(vo(x, t), i). The
above normal form has equilibria (0, 0), (Zst, Zst), (Zsp, 0), (0, Zsp) With opposite stability
where zst, zsp € R.

The ODE - NF is easy to study with polar coordinates for example. One then finds
Vspot(X, V) = Zspe® ™ 4 2, ™V 4 c.c. = 225 (cos(2mx) + cos(2mY))

or

2iTRix

Vstripe(X, ) = Zst€ C.C. = 2Zst cos(27X).

Hence, depending on the stability of the equilibria of (58), one finds that the solutions
of (2) close to the equilibrium V = 0 for o ~ o, converge to V = 0 or to stripe / spot
patterns.

59




RECALL THE BIFURCATION DIAGRAM...

0.30 L L L 1 L L
1.040 1.045 1.050 1.055 1.060 g g 1.065 1.070 1.075
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BoNnus

In order to be able to tell whether the stripe or spot patterns are stable, we need to
be able to compute the coefficients a, 3,y of the normal form as function of the
different parameters of the model.

The normal form has the following coefficients:

37 2 jO Tzk
B/ 1k = 1S [HO e T z(mki/]kc)} + s3/2

37 2 ]g Jﬁ(m)
= S = = = S3.
Ve = peSy g+ 2G| TS
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