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NEURAL FIELDS

• Mesoscopic model of bounded
cortical area Ω

• Continuum of populations
• Populations communicate via
horizontal connections through
gray matter with delays

• Population activity: vector V(x, t)
of p components, one component
per population

gray matter

See work of Bressloff, Coombes, Ermentrout, Atay, Hutt...
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NEURAL FIELDS

• Mesoscopic model of bounded
cortical area Ω

• Continuum of populations
• Populations communicate via
horizontal connections through
gray matter with delays

• Population activity: vector V(x, t)
of p components, one component
per population

external
input

gray matter

white matter

See [Bressloff-Kilpatrick:09], [Venkov-Coombes:07], [Brunel et al. :05], work of Atay,
Hutt

See also the book [Coombes-et al. 14]. Neural Fields,

Can we write equations for V(x, t)?
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LOCAL MODELS FOR p INTERACTING NEURAL MASSES

1 each neural population i is described by its average membrane potential Vi(t) or by its
average instantaneous firing rate νi(t) with νi(t) = Si(Vi(t)), where Si is sigmoidal:

Si(x) =
Sim

1+ e−σi(x−θi)

σi is the nonlinear gain and θi is the threshold

Recall the f-I curve from Lecture 2.

2 a single action potential from neurons in population j, is seen as a post-synaptic potential
PSPij(t− s) by neurons in population i (s is the time of the spike hitting the synapse and t
the time after the spike)

3 the number of spikes arriving between t and t+ dt is νj(t)dt, then the average membrane
potential of population i is:

Vi(t) =
∑
j

t∫
t0

PSPij(t− s)Sj(Vj(s))ds

νi(t) = Si

∑
j

t∫
t0

PSPij(t− s)νj(s)ds


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THE VOLTAGE-BASED MODEL

It is based on the hypotheses:

1 the post-synaptic potential has the same shape no matter what presynaptic
population j caused it, this leads to

PSPij(t) = wijPSPi(t)

wij is the average strength of the post-synaptic potential and if wij > 0 (resp.
wij < 0) population j excites (resp. inhibits) population i

2 if we assume that PSPi(t) = e−t/τiH(t) or equivalently

τi
dPSPi(t)

dt + PSPi(t) = δ(t)

we end up with a system of ODEs:

τi
dVi(t)
dt + Vi(t) =

∑
j

wijSj(Vj(t)) + Iiext(t)

which we rewrite in vector form:

V̇ = −LV+WS(V) + Iext
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V̇ = −LV+WS(V) + Iext
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THE ACTIVITY-BASED MODEL

It is based on the hypotheses:

1 the same shape of a PSP depends only on the presynaptic cell, this leads to

PSPij(t) = wijPSPj(t)

2 we also suppose that PSPj(t) = e−t/τjH(t) and we end up with a system of ODE

τi
dAi(t)
dt + Ai(t) = Si

∑
j

wijAj(t) + Iiext(t)


which we rewrite in vector form:

Ȧ = −LA+ S(WA+ Iext)
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NEURAL FIELDS MODELS

1 idea: combine local models to form a continuum of neural fields
2 Ω ⊂ Rd, d = 1, 2 is a piece of cortex
3 We note V(r, t) (resp. A(r, t)) the state vector at point r in Ω

4 We introduce the p× p matrix W(r, r̄, t)

Voltage-based neural fields equations
dV(r, t)
dt = −LV(r, t) +

∫
Ω

W(r, r̄, t)S(V(̄r, t))dr̄+ Iext(r, t)

Activity-based neural fields equations
dA(r, t)
dt = −LA(r, t) + S

(∫
Ω

W(r, r̄, t)A(̄r, t)dr̄+ Iext(r, t)
)

(∫
Ω

W(r, r̄, t)A(̄r, t)dr̄
)
i
:=
∑
j

∫
Ω

Wij(r, r̄, t)Aj(̄r, t)dr̄
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REMARKS

• when d = 1, most widely studied because of its relative mathematical simplicity
but of limited biological interest

• when d = 2, more interesting from a biological point of view (the thickness is
neglected), received less interest because of the computational difficulty

• unbounded domains: Ω = Rd raises some mathematical questions and
unrealistic

• number of populations: p = 1 or 2
• the sigmoid function can be approximated by a Heaviside function
• W(r, r̄, t) is often chosen symmetric and translation invariant:

W(r, r̄, t) = W(r− r̄, t)

• in the case n = d = 1, the connectivity function has a “Mexican-hat shape”
• features can be taken into account: V(r, θ, t) in the case of orientation
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CAUCHY PROBLEM FOR NFE

Ω is an open bounded set of Rd. We define F = L2(Ω,Rp) (Hilbert space). We can
rewrite equation (1) in a compact form (function V(t) is thought of as a mapping
V : R+ → F ): {

dV
dt = −LV+ G(t, V), t > 0
V(0) = V0 ∈ F

(1)

The nonlinear operator G is defined by:

G(t, V)(r, t) =
∫
Ω

W(r, r̄, t)S(V(̄r, t)) + Iext(r, t), ∀r ∈ Ω

Theorem
If the following two hypotheses are satisfied:
• W ∈ C(R+, L∞(Ω2,Rp)) and is uniformly bounded in time,
• the external input Iext ∈ C(R+,F)

then for any function V0 ∈ F there is a unique solution V defined on R+ and contin-
uously differentiable of the initial value problem (1).
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ELEMENT OF THE PROOF

• for all t > 0,G(t, ·) : F → F , (well-posedness of the problem)
• G : (t, V) → G(t, V) is continuous in (t, V)
• ∥G(t, V1)− G(t, V2)∥F ≤ KDSm sup

t∈R+
∥W(t)∥L∞ ∥V1 − V2∥F for all t > 0 and V1, V2 ∈ F

where DSm = sup
i=1···p

∥S′i∥∞ (Lipschitz continuity of R with respect to its second

argument, uniformly with respect to the first)
• application of the Cauchy Lipschitz theorem in Banach spaces
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MEAN-FIELD LIMITS, MCKEAN-VLASOV 1/2

• NFE as mean limit of Hawkes process [Chevallier et al. 17] (Point process).
• [Lucon et al. :18] Limits of FitzHugh-Nagumo neurons
F(x, y) =

(
x− x3

3 − y, 1
τ
(x+ a− by)

)
with network:

dXi,t =

δF (Xi,t)− K

Xi,t − 1
N

N∑
j=1

Xj,t

 dt+
√
2σdBi,t, i = 1, . . . ,N, t ⩾ 0

to
dXt = (δF (Xt)− K (Xt − E [Xt])) dt+

√
2σdBt, t ⩾ 0

• [Crevat et al. 19] similar with space but without noise. The limit is

V̇ = V− V3
3 −W+ Lρ0(V), Ẇ = V+ a− bW

with Lρ(V) := −(Ψ ∗ ρ)V+Ψ ∗ [ρV]
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MEAN-FIELD LIMITS, MCKEAN-VLASOV 2/2

Without space

• [de Masi et al. 15] spiking network
XN,it = XN,i0 − λ

∫ t
0 X

N,i
s ds−

∫ t
0
∫∞
0 XN,is−1{z≤f

(
XN,is−

)}Ni(ds, dz)
+ 1

N
∑

j̸=i
∫ t
0
∫∞
0 1{z≤f

(
XN,js−

)}Nj(ds, dz)
with limit Xt = X0 +

∫ t
0 E(Xs)− λXsds−

∫ t
0
∫∞
0 Xs−1{z≤f(Xs−)}N(ds, dz)

• [Cormier et al. 19] spiking network

Xt = X0 +
∫ t

0
E(Xs) + b(Xs)ds−

∫ t

0

∫ ∞

0
Xs−1{z≤f(Xs−)}N(ds, dz)

• Networks on random graphs, with adaptation, ...

What do you notice?
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STRUCTURE OF PRIMARY VISUAL CORTEX (V1)
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ANATOMY OF THE VISUAL PATHWAY

retina

optic nerve

optic chiasm

field view

field hemisphere

LGN

1
2
3
4
5
6

P-cell
M-cell

Layers

P-cell

M-cell

MT

eye

V1

LGN

retinotopy
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RETINOTOPY, FROM TOOTELL-1988 (MONKEY)

z→ log (z+ 0.33)− log (z+ 6.66)
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CORTICAL LAYERS ORGANIZATION OF V1 (PURVES)

(David Hubel and Torsten Wiesel, Nobel 1981)

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Cortical layers organization of V1 (Purves et al)

G. Faye / O. Faugeras 5 / 31
We use fMRI nowadays...
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OPTICAL IMAGING: METHODS

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Optical imaging: methods

G. Faye / O. Faugeras 7 / 31

19



OPTICAL IMAGING: METHODS

Orientation columns, [Bosking et al. 97]

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Results for orientation (Bosking et al 97)

G. Faye / O. Faugeras 8 / 31 20



ORIENTATION COLUMNS

Closer look, [Ohki et al. 06] (cat)

Pinwheel points are not an averaging artifact. Selective cells (1,034 / 1,055).

azimuth–orientation function) derived from cells located in the
periphery of the pinwheel (more than 65 mm from the centre; blue
points). Cells in the pinwheel centre (less than 65 mm; red points)
follow the same curve (correlation coefficient r ¼ 0.98). Thus, cells in
the centre of the pinwheel are arranged according to the pattern seen
in the periphery.
We further examined the relationship between pinwheel centre

and periphery by quantifying three parameters: the orderliness of the
orientation map, the response strength, and the orientation tuning
width. First, we measured the angular deviation, which is the degree
to which individual cells deviated from the orderly pinwheel arrange-
ment, expressed in the azimuth–orientation function (black curve in
Fig. 3b) for each pinwheel. For cells close to the pinwheel centre, the
distribution of angular deviations was clearly biased towards zero
(Fig. 3c; median 98), although they were somewhat higher than in the
surround (Fig. 3d; median 58 (see also Supplementary Fig. S2);
however, if the deviation was measured as cortical displacement of
neurons, it was smaller at the centre (see Supplementary Fig. S3)).
The distribution in the centre was significantly different from the
random distribution obtained by shuffling the location of cells
(Fig. 3c, grey bars; P , 10210; Wilcoxon rank-sum test). Second,
the response amplitudes in the pinwheel centre (Fig. 3f; median 4.3%
fluorescence increase) were smaller than in the periphery (Fig. 3g;
5.8%, P , 10212; Wilcoxon rank-sum test). Finally, cells close to the
pinwheel centre were selective to orientation but had a slightly
broader tuning bandwidth (Fig. 3i; median 378) than cells in the
periphery (Fig. 3j; median 318; P , 1024; Wilcoxon rank-sum test).
The differences in tuning width were sufficiently robust that they
were observed independently in different subsets of the data (even
and odd trials, Supplementary Figs S4 and S5).
We found essentially the same relationship between the pinwheel

centre and periphery in all ten pinwheels studied. The pinwheel

centres were remarkably well organized: the median angular devia-
tion of the measured preferred orientation from the azimuth–
orientation function was small (less than 178), although consistently
larger than in the periphery (Fig. 3e). The median response strength
of the cells was always 17–41% smaller in the pinwheel centre than in
the periphery (Fig. 3h). Themedian bandwidth of orientation tuning
was consistently broader in the pinwheel centre than in the periphery,
but this difference was always small (less than 118; Fig. 3k).
The present study was performed with kittens at an age when

orientation maps are well established (postnatal days 28–35)15,16, but
still within the critical period. Our results are consistent with the idea
that tuning widthmight be slightly broader in the pinwheel centres of
kittens of this age, as has been suggested17. However, any quantitative
conclusions about the degree of orientation tuning must take several
technical issues into consideration. First, to minimize experiment
time, we sampled orientation coarsely (458) in most experiments.
When we sampled orientation more densely (22.58) in some experi-
ments, the apparent tuning width of the most selective cells became
considerably smaller (see Supplementary Figs S6 and S7), which
rather enlarged the difference in tuning width between centre and
periphery. Second, the smaller responses at the pinwheel centres
might result in apparently broader curves due to decreased signal-to-
noise ratios; indeed, the measured tuning width was inversely
correlated with response strength both near the centre and in the
periphery (Supplementary Fig. S8).
The smaller responses near the pinwheel centres than in the

periphery might also have contributed to the apparently higher
percentage of unresponsive cells in the centre (16.5%) than in the
periphery (5.8%). Alternatively, the unresponsive cells at the pin-
wheel centres might have been selective to some other stimulus
attributes. In a few experiments we tried square-wave gratings at a
range of spatial frequencies (0.07–1.0 cycles/degree) at a single

Figure 1 | Functional maps of orientation pinwheels. Pinwheels were
mapped at low resolution (a) and with single-cell resolution (b–e). a, An
orientation map obtained with intrinsic-signal optical imaging. In this
colour-coded map (polar map), hue is determined by the best orientation.
Darker colours, in pinwheel centres, represent less selective responses.
b, Two-photon calcium imaging. Approximately, the square region drawn in
a was imaged at 250mm below the pial surface. The top panel shows an
averaged image of cortical cells stained with the calcium indicator Oregon
Green 488 BAPTA-1 AM. The bottom four panels show single-condition
maps for four orientations of visual stimuli (DF/F, the percentage change in
fluorescence between stimulation period and blank; gaussian smoothed

by 1 mm). The scale bar (DF/F) applies only to the bottom four panels.
c, Cell-based orientation maps from nine different depths (130, 150, 170,
190, 210, 230, 250, 270 and 290mm, as indicated). Selective cells (1,034 out of
1,055 cells; P , 0.05, ANOVA across eight directions) are coloured
according to their preferred orientation. The cortical surface was tilted
(about 158), which was corrected for by shifting the images by 5.2 mm for
every 20 mm in depth (grey margins indicate this shift). The last panel shows
the overlay of images from all nine depths. d, e, Dye-loaded cells and
orientationmaps in pinwheels from two other animals. Scale bars, 1mm (a);
100mm (b–e).

LETTERS NATURE|Vol 442|24 August 2006

926
© 2006 Nature Publishing Group 
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PLASTICITY OF REPRESENTATION

From [Dragoi et al. 2000] (Cat)
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LINK FUNCTION - ANATOMY

Long range connections [Bosking:1997],[Angelucci:2002]

macaquetree shrew
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ANESTHETISED CAT, SPONTANEOUS ACTIVITY

A bit controversial, [Kenet et al. 03]

..............................................................

Spontaneously emerging cortical
representations of visual attributes
Tal Kenet*, Dmitri Bibitchkov, Misha Tsodyks, Amiram Grinvald
& Amos Arieli

Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100,
Israel

* Present address: Keck Center for Integrative Neurosciences, University of California San Francisco,

513 Parnassus Avenue, Box 0732, San Francisco, California 94143, USA

.............................................................................................................................................................................

Spontaneous cortical activity—ongoing activity in the absence of
intentional sensory input—has been studied extensively1, using
methods ranging from EEG (electroencephalography)2–4,
through voltage sensitive dye imaging5–7, down to recordings
from single neurons8,9. Ongoing cortical activity has been shown
to play a critical role in development10–14, and must also be
essential for processing sensory perception, because it modulates
stimulus-evoked activity5,15,16, and is correlated with behaviour17.
Yet its role in the processing of external information and its
relationship to internal representations of sensory attributes
remains unknown. Using voltage sensitive dye imaging, we
previously established a close link between ongoing activity in
the visual cortex of anaesthetized cats and the spontaneous firing
of a single neuron6. Here we report that such activity encom-
passes a set of dynamically switching cortical states, many of
which correspond closely to orientation maps. When such an
orientation state emerged spontaneously, it spanned several
hypercolumns and was often followed by a state corresponding
to a proximal orientation.We suggest that dynamically switching
cortical states could represent the brain’s internal context, and
therefore reflect or influence memory, perception and behaviour.
To determine the existence of spontaneously occurring states that

correspond to cortical representations of orientations and charac-
terize their dynamics, we chose to explore cat area 18, where most
cells are selective for stimulus orientation, and therefore robust
functional maps corresponding to different orientations are readily
revealed. We used voltage sensitive dye imaging, which emphasizes
synaptic membrane potential changes (similar to intracellular
recordings from large populations of neurons18,19). We recorded
activity continuously in 30-s sessions (3,072 frames spaced 9.6ms
apart, covering a cortical area up to 4 £ 7mm) both in the presence
and absence of stimulation (full field oriented gratings, see Methods
for details). We used the evoked data to construct single-condition

and full-orientation maps, and used spatial correlation coefficients
between single frames of ongoing activity and the evoked maps to
evaluate similarity. Figure 1 illustrates the resemblance between a
spontaneous single frame (Fig. 1b), its best correlated orientation
map (Fig. 1a), and a single evoked frame (Fig. 1c). On average, the
maximal correlation coefficient for evoked frames with any par-
ticular map was only 10 ^ 5% higher than the maximal correlation
coefficients seen for spontaneous frames (0.63 and 0.58 respectively
in the example of Fig. 1). It is pertinent to note that the correlation
coefficients between twomaps obtained using the same stimulus, but
in different recording sessions, usually ranged between 0.7 and 0.8.

To establish that such intrinsic orientation states occurred spon-
taneously much more frequently than expected by chance, we
constructed control ‘artificial orientation maps’ (see Methods).
We compared the distribution of correlation coefficients between
spontaneous frames and the orientation maps (Fig. 2, red) with the
corresponding distribution obtained using the control maps (Fig. 2,
blue). Although both distributions were symmetrical around zero,
the one computed with the real orientation maps was much wider.
Specifically, whereas the maximal correlation coefficient with con-
trol patterns rarely exceeded 0.2 (less than 1% of the time), the
corresponding values for the real orientationmaps reached values as
high as 0.6, with themeanmaximal value across all hemispheres and
imaging sessions being 0.5 ^ 0.1. Overall, the threshold for signifi-
cant correlation (P , 0.01) was found to range between j0.18j and
j0.22j using any of the control patterns. For subsequent analysis we
conservatively set the threshold for significant correlation at j0.25j.
Using this threshold, we found that states corresponding to orien-
tation maps arise spontaneously about 20% of the time. Further-
more, we found that the amplitude of the most highly correlated
spontaneous states was on average only 30% lower than the
amplitude of the most highly correlated evoked single frames (see
Supplementary Information SI1 for additional information).

To characterize the distribution of spontaneous occurrences of
different orientation states, we quantified the occurrence of spon-
taneous frames that were significantly correlated with each of the
orientation maps. The obtained distribution was biased to states
corresponding to one of the cardinal orientations (08 and 908). An
example from one hemisphere is shown in Fig. 3a. Overall, themaps
corresponding to the two cardinal orientations appeared 20%more
often than those corresponding to the two oblique ones (458 and
1358), but this dynamical bias for different cats was highly variable,
ranging from 10% to 80% (see example from three extreme cases in
Fig. 3b, green). Additionally, states corresponding to oblique maps
emerged with smaller correlation coefficients than cardinal ones
(Fig. 3b, blue). These results indicate a strong dynamical over-

Figure 1 Comparing instantaneous patterns of spontaneous and evoked activity to the
averaged functional map. a, The orientation map using full-field gratings of vertical
orientation, obtained by averaging 165 frames (5 frames from each trial starting from

100ms after stimulus onset, over 33 stimulus presentations). b, A map obtained in a

single frame from a spontaneous recording session. c, A single frame from an evoked

session using the same orientation as for the map. Amplitude was computed as described

in Methods.

 

Figure 2 Spontaneously emerging orientation states. Red, example of the distribution of
correlation coefficients between the horizontal map and spontaneous frames over an

entire session. Blue, the same, using an inverted map. Each distribution was fitted to a

gaussian to compute the significance level, j0.25j for P , 0.01. The distribution was

similar regardless of control maps used. Actual significance values were computed from

the histograms resulting from correlations with all maps. Note that although low-pass

filtering the frames and maps predictably increased the value of the correlation

coefficients, the number of ‘significant frames’ remained similar, as the control correlation

coefficients increased proportionally.

letters to nature

NATURE |VOL 425 | 30 OCTOBER 2003 | www.nature.com/nature954 © 2003        Nature  Publishing Group

Very important question: is the response modulated by the cortex or strongly
generated by the cortex?

Res = F(Ithal) v.s Res = F(Res, ϵIthal).
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A CLOSER LOOK AT ORIENTATION SELECTIVITY

From [Sclar et al. 82] and [Nauhaus et al. 08]
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APPLICATIONS OF NEURAL FIELD MODELS
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RING MODEL OF ORIENTATION: EXPERIMENTAL FACTS7.4 Recurrent Networks 27
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had λ0 = 7.3, λ1 = 11, A = 40
Hz, and ε = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)

A Recurrent Model of Complex Cells in Primary Visual Cortex

In the model of orientation tuning discussed in the previous section, recur-
rent amplification enhances selectivity. If the pattern of network connec-
tivity amplifies nonselective rather than selective responses, recurrent in-
teractions can also decrease selectivity. Recall from chapter 2 that neurons
in the primary visual cortex are classified as simple or complex depend-
ing on their sensitivity to the spatial phase of a grating stimulus. Simple
cells respond maximally when the spatial positioning of the light and dark
regions of a grating matches the locations of the ON and OFF regions of
their receptive fields. Complex cells do not have distinct ON and OFF re-
gions in their receptive fields and respond to gratings of the appropriate
orientation and spatial frequency relatively independently of where their
light and dark stripes fall. In other words, complex cells are insensitive to
spatial phase.

Chance, Nelson, and Abbott (1999) showed that complex cell responses
could be generated from simple cell responses by a recurrent network. As
in chapter 2, we label spatial phase preferences by the angle φ. The feed-
forward input h(φ) in the model is set equal to the rectified response of
a simple cell with preferred spatial phase φ (figure 7.11A). Each neuron
in the network is labeled by the spatial phase preference of its feedfor-
ward input. The network neurons also receive recurrent input given by
the weight function M(φ− φ′) = λ1/(2πρφ) that is the same for all con-

Draft: December 19, 2000 Theoretical Neuroscience
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RING MODEL OF ORIENTATION: MECHANISM

retina LGN hypercolumn

P
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MEXICAN HAT CONNECTIVITY

Goal: reduce to one population.

Consider two populations E/I(
τE

d
dt + 1

)
VE = JEE · SE(VE)− JEI · SI(VI) + IE(

τI
d
dt + 1

)
VI = JIE · SE(VE) + II

• Neglect JII
• Gaussian kernels
• Inhibition is recruited SI(VI) ≈ αVI

Then (
τE

d
dt + 1

)
VE =

(
JEE − αJEI · JIE

)
· SE(VE) + IE − αJEI · II

≡ J · SE(VE) + I
.
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MEXICAN HAT CONNECTIVITY
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MOTIVATION FOR THE RING MODEL: SINGLE POPULATION ON Ω = S1

0

0

• One population with Mexican hat connectivity
• V(θ, t) ≡

∫ 1
0 rV(r, θ, t)dr

Then we can find a Ring Model approximation for V.
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RING MODEL OF ORIENTATION TUNING: EQUATION

We consider the following equation:

τ
dV(θ, t)
dt = −V(θ, t) +

π/2∫
−π/2

J(θ − θ′)S(V(θ′, t))dθ
′

π
+ ϵI(θ)

where τ is a temporal synaptic constant (τ ≈ 10ms), J(θ− θ′) is a connectivity function
(excitatory/inhibitory) and S is the sigmoidal function:

S(x) = 1
1+ e−x+k

I(θ) is an input coming from the LGN given by:

I(θ) = 1− β + β cos (2 (θ − θaff))

Moreover, we take the simplest possible connectivity function:

J(θ) = −1+ J1 cos(2θ)
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PATTERNS OF THE ERMENTROUT-COWAN MODEL OF VISUAL HALLUCINATIONS

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Patterns of the Ermentrout-Cowan model

V1 Visual field

G. Faye / O. Faugeras 28 / 31 34



ERMENTROUT-COWAN MODEL

We consider the following equation:

τ
dV(r, t)
dt = −V(r, t) +

∫
R2

W(r, r̄)S(V(̄r, t))dr̄

where τ is a temporal synaptic constant (τ ≈ 10ms), W(r, r̄) = w (∥r− r̄∥) is a
connectivity function (excitatory/inhibitory) and S is the sigmoidal function:

S(x) = 1
1+ e−x+k − 1

1+ ek

We choose a “Mexican-hat” connectivity function:

w(r) = A1
σ1
e
− r2

σ21 − A2
σ2
e
− r2

σ22
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GEOMETRIC VISUAL HALLUCINATIONS: REDRAWN
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GEOMETRIC VISUAL HALLUCINATIONS: THEORY

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Geometric visual hallucinations

G. Faye / O. Faugeras 30 / 31
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BRESSLOFF-COWAN-GOLUBITSKY-THOMAS-WIENER MODEL

We consider the following equation [Bressloff-etal.:01]:

τ
dV(r, θ, t)

dt = −V(r, θ, t) +
∫
R2

π/2∫
−π/2

W(r, θ|̄r, θ′)S(V(̄r, θ′, t))dr̄dθ
′

π

where τ is a temporal synaptic constant (τ ≈ 10ms), S is the sigmoidal function:
S(x) = 1

1+e−x+k − 1
1+ek and

W(r, θ|̄r, θ′) = J(θ − θ′)δr,̄r + β (1− δr,̄r)wlat(r− r̄, θ)

• for β = 0, we recover the Ring Model of orientation tuning
• if V(r, θ, t) is independent of θ we recover the Ermentrout-Cowan model
• we will try to infer some properties from the case β = 0 to the case 0 < β ≪ 1 and in the
same time we will use similar method as for the Ermentrout-Cowan model
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ANOTHER NETWORK MODEL OF THE VISUAL CORTEX AREA V1

We write the equations for the average membrane potential V(x) of neurons at
position x ∈ Ω ⊂ V1 (see [Veltz-etal:15]):

τ
dV(x)
dt = −V(x) +

∫
Ω

J(x, y)S (V(y))dy+ Ithal(x)

• Ω is a piece of visual cortex, open bounded.
• S is a sigmoid function, bounded, increasing
• Ithal(x), input from the thalamus, here = 0
• J(x, y) is the connection strength between neurons at positions x and y
• Synaptic/Propagation delays neglected.

⇒ Note that we have lumped many populations in an equation for a single
population!
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CONNECTIONS MODEL FOR VISUAL CORTEX

See [Bressloff:03]
J(x, y) = Jloc(∥x− y∥) + ϵJlat(x, y)

Local connections
• Jloc is a difference of Gaussians
• Translation invariance on cortical plane (see next)
• Gradient system if ϵ = 0

Long-range connections, symmetry-breaking term
JLR(x, y) = Gσθ (θ(x)− θ(y))J0(χ,R−2θ(x)(x− y))
• Anisotropy function J0(x) = exp−

(
(1− χ)x21 + x22

)
/2σ2lat, χ ∈ [0, 1]

1 χ > 0 Tree Shew
2 χ = 0 Macaque
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EXAMPLES OF PO MAPS, TILINGS OF Ω 2/2

The PO map θ defines a tiling of Ω (or R2), characterized by its wallpaper group
(invariance group of θ).
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BIFURCATION DIAGRAM, SQUARE CASE, ϵ = 0
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QUALITATIVE ANALYSIS OF DYNAMICS ON Tϵ: SQUARE LATTICE CASE
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SOME PLANFORMS IN THE SQUARE CASE
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GRID CELLS MODEL 1/2

[Burak-Fiete 2009] We consider the following equation:

τ
dA(ri, t)
dt = −A(ri, t) + S

∑
j

W(rj, rj)A(rj, t) + Iext(ri, t)


• Inverted mexican hat function G
• W(rj, rj) = G(rj − rj − leθj), all inhibitory
• Iext(ri) = A(xi)

(
1+ αeθj · v

)
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GRID CELLS MODEL 2/2

instantaneous snapshot of full neural population, the single-neuron
response is an integrated measure over time of the activity one cell.
In the rest of this paper, SN response refers to the accumulated
response of single neurons over a trajectory.

In the periodic network, the SN response, accumulated over the
,20 minute trajectory, and plotted as a function of the true rat
position, shows coherent grid activity, Figure 2B. The network
accurately integrates input velocity, as can verified directly by
comparing the cumulative network pattern phase to the rat’s true
position, Figure 2C. The total error, accumulated over ,260 m
and 20 minutes, is ,15 cm, compared to a grid period of about
48 cm. This corresponds to an average integration error of less
than 0.1 cm per meter traveled and less than 0.01 cm per second
traveled. The range of rat speeds represented in the input
trajectory was 0–1 m/s, showing that this network is capable of
accurate path integration over this range of speeds.

A deterministic periodic network of only 402 (,103) neurons
also performs well enough to produce coherent SN grids over the
same trajectory, Figure S1.

Equivalent Conditions for Accurate Path Integration
The presence of a clear spatial grid in the SN response to

velocity inputs alone is a good indication of the accuracy of
integration. If the rat’s internal estimate of position were to drift by
half a grid period, the neuron would fire in the middle of two
existing vertices rather than on a vertex. As the rat traveled over its
trajectory, the neuron would fire at various ‘‘wrong’’ locations,
with the resulting SN response becoming progressively blurred
until no grid would be discernible. This would happen even if the
population pattern remained perfectly periodic throughout.

Therefore, the following properties are equivalent: (1) Coherent
grids in the SN responses, (2) Accurate path integration of the full
trajectory over which the SN responses are visualized, with errors
smaller than the grid period. An example of this equivalence is

given in Figure 2A and 2C, which show sharp SN patterning and a
very small integration error.

Next, because the population pattern phase accumulates errors
whenever the pattern slips relative to rat motion, another
equivalent condition for accurate path integration is (3) Linear
relationship between network flow velocity and input velocity over
the input velocity range, independent of direction.

These equivalent conditions for accurate integration apply to
both periodic and aperiodic network models of grid cells (discussed
next).

An Appropriately Configured Aperiodic Network Can
Accurately Integrate Rat Velocity

It is unclear whether a torus-like network topology, in which
neurons along opposite edges of the network are connected to
form periodic boundary conditions, exists in the rat’s brain. Even if
such connectivity exists, it may require, at an earlier stage of
development, an initially aperiodic network (see Discussion). Hence
it is interesting to consider whether a network with non-periodic
boundaries can produce grid-cell like SN activity. The difficulty
here is that as the population pattern flows in response to velocity
inputs, it must reform at the boundaries of the neural sheet. Newly
forming activity blobs must be created at accurate positions, and
the process must not interfere with the pattern’s flow.

A central result of the present work on aperiodic networks is that
such networks can, in fact, accurately integrate velocity inputs.
With an appropriate choice of architecture and inputs and with
deterministic dynamics, an aperiodic network can produce SN
responses that are as accurate as in the periodic case above. This is
illustrated in the example of Figure 2D–F. At the aperiodic
boundaries, the same dynamics that governed the initial pattern
formation process also cause the pattern to continually regenerate
as the pattern flows (Figure 1C, bottom). The phases or locations

Figure 2. Periodic and aperiodic networks are capable of accurate path integration. Simulation of network response, with velocity inputs
corresponding to a rat’s recorded trajectory in a 2 m circular enclosure [50]. The boundary conditions in the neural sheet are periodic in (A–C) and
aperiodic in (D–F). (A,D) Instantaneous activity within the neural sheet (color represents the firing rate: black corresponds to vanishing rate). The red
curve in (D) represents the fading profile of inputs to the network. (B,E) Grid cell response: average firing rate of a single neuron (located at the
electrode tip in (A,D)), as a function of the rat’s position within the enclosure. (C,F) Velocity integration in the network: Top: Actual distance of the rat
from a fixed reference point (black), compared to the network’s integrated position estimate, obtained by tracking the flow of the pattern in the
population response (blue). The reference point is at the left-bottom corner of the square in which the circular enclosure is inscribed. Middle:
Accumulated distance between the integrated position estimate and the actual position. Bottom: Orientation of the three main axes in the
population response during the trajectory. Note that there is no rotation in the periodic network, and little rotation in the aperiodic one.
doi:10.1371/journal.pcbi.1000291.g002

Accurate Path Integration in the Grid-Cell System

PLoS Computational Biology | www.ploscompbiol.org 4 February 2009 | Volume 5 | Issue 2 | e1000291

46



FLICKERING STIMULUS AND HALLUCINATIONS

S(t) = A sin(2πt/T)
See Rule - Ermentrout 2011.
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STUDY OF A 2D NEURAL FIELD MODEL OF
SIMPLE VISUAL HALLUCINATIONS



SETTING OF THE MODEL

⇒ Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.

The membrane potential V(x, t) of the population at location x ∈ R2 satisfies the
equation

τ
d
dtV(x, t) = −V(x, t) +

∫
R2
J(∥x− y∥)S0 [σV(y, t)]dy

def
= (−V+ J · S0(µV))(x) (2)

where S0(x) = s1x+ s2
2 x

2 + s3
6 x

3 + · · · is C3 bounded and such that S0(0) = 0.
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SETTING OF THE MODEL

⇒ Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.

The membrane potential V(x, t) of the population at location x ∈ R2 satisfies the
equation

τ
d
dtV(x, t) = −V(x, t) +

∫
R2
J(∥x− y∥)S0 [σV(y, t)]dy

def
= (−V+ J · S0(µV))(x) (2)

where S0(x) = s1x+ s2
2 x

2 + s3
6 x

3 + · · · is C3 bounded and such that S0(0) = 0.

We note that V = 0 is an equilibrium and we rewrite (2) as d
dtV = AV+ R(V, µ) with

A = −Id+ σcs1J, R(V, µ) = J · S0((σc + µ)V)− σcs1J · V.
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SETTING OF THE MODEL

⇒ Mathematical analysis of the model of Ermentrout-Cowan of visual hallucinations.

The membrane potential V(x, t) of the population at location x ∈ R2 satisfies the
equation

τ
d
dtV(x, t) = −V(x, t) +

∫
R2
J(∥x− y∥)S0 [σV(y, t)]dy

def
= (−V+ J · S0(µV))(x) (2)

where S0(x) = s1x+ s2
2 x

2 + s3
6 x

3 + · · · is C3 bounded and such that S0(0) = 0.

We note that V = 0 is an equilibrium and we rewrite (2) as d
dtV = AV+ R(V, µ) with

A = −Id+ σcs1J, R(V, µ) = J · S0((σc + µ)V)− σcs1J · V.

Hence, we perform a perturbation of V = 0 around the parameter value σ = σc that
we shall precise later.
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ASSUMPTIONS REGARDING THE CONNECTIVITY

We make the following assumptions concerning our problem (2).

• we assume that J ∈ H1(R2) for regularity of the nonlinearity
• we assume that J ∈ L1(R2) to be able to perform Fourier transforms.

This implies that J ∈ L∞(R2) by Sobolev embedding theorems.
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EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Tt · V(x) = V(x− t),

of rotations

Rθ · V(x) = V(R−θx), Rθ =

(
cos θ sin θ

− sin θ cos θ

)
,

and of reflections

S · V(x) = V(S−1x), S =

(
1 0
0 −1

)
.
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EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Tt · V(x) = V(x− t),

of rotations

Rθ · V(x) = V(R−θx), Rθ =

(
cos θ sin θ

− sin θ cos θ

)
,

and of reflections

S · V(x) = V(S−1x), S =

(
1 0
0 −1

)
.

These transformations raise an issue in view of the application of the center manifold
Theorem. Why?
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EQUIVARIANCE

A fundamental feature of the equations (2) lies in their symmetries. Indeed, the
following linear representations of the symmetries commute with the vector field (2),
we have the symmetries of translations

Tt · V(x) = V(x− t),

of rotations

Rθ · V(x) = V(R−θx), Rθ =

(
cos θ sin θ

− sin θ cos θ

)
,

and of reflections

S · V(x) = V(S−1x), S =

(
1 0
0 −1

)
.

These transformations raise an issue in view of the application of the center manifold
Theorem. Why?

⇒ if U(x) is in the kernel kerA, then its R2-orbit t→ Tt · U gives an infinite center part
Σ0(A). Hence, we need to reduce the symmetry group in order to bypass this difficulty.
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EUCLIDEAN GROUP AND LATTICE

To circumvent this issue, we further assume that V has some periodicity. More
precisely, we define a planar lattice L as a set of integer linear combinations of two
independent vectors l⃗1 and l⃗2

L = {m⃗l1 + n⃗l2, m,n ∈ Z}.

It forms a discrete subgroup of R2.
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EUCLIDEAN GROUP AND LATTICE

To circumvent this issue, we further assume that V has some periodicity. More
precisely, we define a planar lattice L as a set of integer linear combinations of two
independent vectors l⃗1 and l⃗2

L = {m⃗l1 + n⃗l2, m,n ∈ Z}.

It forms a discrete subgroup of R2. To each lattice, we associate a dual lattice L∗

generated by two linearly independent vectors k⃗1 and k⃗2 that satisfy k⃗i · l⃗j = δij

L∗ = {nk⃗1 +mk⃗2, m,n ∈ Z}.

The largest subgroup of O(2) which keeps the lattice invariant is called the holohedry
of the lattice. There are 3 lattices in the plane as summarized in the next table.

Name Holohedry Basis of L Basis of L∗

Square D4 l⃗1 = (1, 0), l⃗2 = (0, 1) k⃗1 = (0, 1), k⃗2 = (1, 0)
Rhombic D2 l⃗1 = (1,− cot θ), l⃗2 = (0, cot θ) k⃗1 = (1, 0), k⃗2 = (cos θ, sin θ)

Hexagonal D6 l⃗1 = ( 1√
3 , 1), l⃗2 = ( 2√

3 , 0) k⃗1 = (0, 1), k⃗2 = (
√
3
2 ,− 1

2 )
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REDUCTION OF SYMMETRIES 1/2

⇒ We look for solutions V of (2) which are doubly periodic on the square lattice with
basis l⃗1 = k⃗1 = (1, 0) and l⃗2 = k⃗2 = (0, 1).

We require that V(x+ l) = V(x) for all l ∈ Lsquare and x ∈ R2.
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REDUCTION OF SYMMETRIES 1/2

⇒ We look for solutions V of (2) which are doubly periodic on the square lattice with
basis l⃗1 = k⃗1 = (1, 0) and l⃗2 = k⃗2 = (0, 1).

We require that V(x+ l) = V(x) for all l ∈ Lsquare and x ∈ R2. It gives an equation on
the domain (0, 1)2 def= D of the lattice:

V̇ = −V+ J̃ · S0(µV) = AV+ R(V, µ)

where J̃ · U =
∫
D J̃(· − y)U(y)dy and J̃ def=

∑
l∈L

J(·+ l).

Lemma
• J̃ is doubly periodic.
• J̃ ∈ L2(D) since J ∈ L1(R2).
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REDUCTION OF SYMMETRIES 2/2

⇒ Reduction of the symmetry group of the equations.

• The group of spatial translations is now isomorphic to the torus T2 ≡ R2/Z2.
• The model is also symmetric with respect to the transformations that leave the
basic structure invariant i.e. dihedral group D4 = ⟨Rπ/4,S⟩ generated by
R def

= Rπ/4 and S which act on the membrane potential as: R · V(x, y) = V(y, x)
and S · V(x, y) = V(x,−y).

The full symmetry group is then:

Gsq = D4 × T2.
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FUNCTIONAL SETTING

We wish to apply the CMT in a Hilbert spaces setting for simplicity. Hence, we consider
the space of periodic square integrable functions

X = L2
per(D)

where D =
(
− 1

2 ,
1
2
)2. In order to have a differentiable reminder R and to be able to

perform Taylor expansion, it is convenient that the domain of R is a Banach algebra.
This is the case for example when we consider the Sobolev space of periodic functions

Z = H1per(D).

The Cauchy problems is formulated with A = −id+ µcs1̃J ∈ L(Z,X ) and
R(V, µ) = J̃ · S0(µV)− µcs1̃J · u ∈ C∞(Z × R,X ).

Lemma
Assume that 0 ∈ Σ(A). Then, the neural fields equations (2) have a parameter de-
pendent center manifoldM(µ).

55



STATIC BIFURCATION

We now assume that (2) features a static bifurcation, meaning that Ec = ker A ̸= {0}.
More precisely, we assume that

ker A =
{
z =

2∑
j=1

zje2iπkj·x + c.c., zi ∈ C
}
⊂ Z

which is a 4-dimensional space. Note that it is possible to have an 8-dimensional
space by carefully choosing the eigenvectors. This condition sets the value σc of the
stiffness parameter, namely, we set

σc = inf
σ∈R+

{∃k ∈ L∗, 1 = s1σĴk}.

Remark
In practice, we can apply the CMT to every σ such that 1 = s1σĴk for some k ∈ L∗.
We call these σs bifurcation points of the Cauchy problem. However, the bifurcation
points larger than σc will generally lead to unstable trajectories which is why we focus
on σc here.
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EQUIVARIANT VERSION OF CMT AND NFT

Theorem (CMT)
We assume that there is there is a linear operator T ∈ L(X )∩L(Z) which commutes
with the vector field:

TA = AT, TR(u) = R(Tu).

We further assume that the restriction T0 of T to the center subspace E0 is an isometry.
Under the assumptions CMT, one can find a reduction function Ψ which commutes
with T, i.e., TΨ(u0) = Ψ(T0u0) for all u0 ∈ E0, and such that the vector field in the
reduced equation commutes with T0.

Theorem (Normal form)
If we further assume that there is an isometry T ∈ L(Rn) which commutes with A
and R, then the polynomials Φ,N commutes with T.
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NORMAL FORM OF THE BIFURCATION

Lemma
The normal form at order three associated with the 4-dimensional space of the Gsq-
equivariant problem satisfies:{

ż1 = z1
(
α+ β|z1|2 + γ|z2|2

)
ż2 = z2

(
α+ β|z2|2 + γ|z1|2

)
where α, β, γ ∈ R.
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STRIPES OR SPOTS?

Close to the bifurcation point σ = σc, we have V(x, t) = v0(x, t) + Ψ̃(v0(x, t), µ). The
above normal form has equilibria (0, 0), (zst, zst), (zsp, 0), (0, zsp) with opposite stability
where zst, zsp ∈ R.

The ODE - NF is easy to study with polar coordinates for example. One then finds

Vspot(x, y) ≈ zspe2iπk1x + zspe2iπk1y + c.c. = 2zsp (cos(2πx) + cos(2πy))

or
Vstripe(x, y) ≈ zste2iπk1xc.c. = 2zst cos(2πx).
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STRIPES OR SPOTS?

Close to the bifurcation point σ = σc, we have V(x, t) = v0(x, t) + Ψ̃(v0(x, t), µ). The
above normal form has equilibria (0, 0), (zst, zst), (zsp, 0), (0, zsp) with opposite stability
where zst, zsp ∈ R.

The ODE - NF is easy to study with polar coordinates for example. One then finds

Vspot(x, y) ≈ zspe2iπk1x + zspe2iπk1y + c.c. = 2zsp (cos(2πx) + cos(2πy))

or
Vstripe(x, y) ≈ zste2iπk1xc.c. = 2zst cos(2πx).

Hence, depending on the stability of the equilibria of (58), one finds that the solutions
of (2) close to the equilibrium V = 0 for σ ≈ σc converge to V = 0 or to stripe / spot
patterns.

Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Patterns of the Ermentrout-Cowan model

V1 Visual field

G. Faye / O. Faugeras 28 / 31
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RECALL THE BIFURCATION DIAGRAM...
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BONUS

In order to be able to tell whether the stripe or spot patterns are stable, we need to
be able to compute the coefficients α, β, γ of the normal form as function of the
different parameters of the model.

Lemma
The normal form has the following coefficients:

β/µ3c Ĵkc = µcs22
[

Ĵ0
1−Ĵ0/Jkc

+
Ĵ2kc

2(1−Ĵ2kc /̂Jkc )

]
+ s3/2

γ/µ3c Ĵkc = µcs22
[

Ĵ0
1−Ĵ0/Jkc

+ 2 Ĵ(1,1)
1−Ĵ(1,1)/̂Jkc

]
+ s3.
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