ENS - Master MVA / Paris 6 - Master Maths-Bio

Tutorial 1

Romain VELTZ, romain.veltz@inria.fr

Do not hesitate to contact me for more details concerning the solutions.

Tut: done during the tutorials

Exercise

Ultra basic

• (Tut) Find the solution of $\dot{x} = Ax + b(t)$ where $A \in M_n(\mathbb{R})$ and $b \in C^0(\mathbb{R}, \mathbb{R}^n)$.

$$x(t) = e^{tA}x_0 + \int_0^r e^{(t-s)A}b(s)ds$$

• If $x(t) \le f(t) + \int_0^t h(s)x(s)ds$ with x, f, g continuous and $f, h \ge 0$, show that

$$x(t) \le f(t) + \int_0^t f(s)h(s) \exp\left(\int_s^t h(r)dr\right)ds$$

Define $X(t) = \int_0^t hx$ and differentiate it to obtain $\frac{d}{dt} \left[e^{-\int_0^t h} X(t) \right] \le h(t) f(t) e^{-\int_0^t h}$ and then integrate this formula.

Exercise

Around the Cauchy-Lipschitz theorem

• (Tut) (uniqueness) Using the Bernouilli principle, one can show that the water height of a

tank with leaking hole at the bottom satisfies the following equation

$$\dot{h}(t) = -A\sqrt{h(t)}$$

where *A* is a positive constant depending on the physical parameters of the problem. Show that there are multiple solutions to this equation satisfying the condition h(T) = 0 for T > 0. Knowing the state of the tank at time t_0 , can we find the tank state at any time?

The function $h(t) = \frac{A^2}{4}(T-t)^2$ if $t \le T$ and 0 otherwise is a solution. h = 0 is another solution, the non uniqueness comes from $x \to \sqrt{x}$ not being Lip at 0.

• Let us consider the globally defined flow $t \to \phi^t(x)$ and the map $F : x \to \phi^T(x)$. Assume that x^* is a fixed point of F. Show that $\phi^s(x^*)$ is also a fixed point of F. Deduce that if x^* is an isolated fixed point of F, then it is an equilibrium point.

 $F(\phi^s(x^*)) = \phi^{T+s}(x^*) = \phi^s(F(x^*)) = \phi^s(x^*)$. If x^* is isolated, then $\phi^t(x^*) = x^*$ for t small enough: x^* is an equilibrium.

• Assume that there is an invariant circle for F, $\Gamma = \{\theta \to X_0(\theta), \theta \in \mathbb{R}/\mathbb{Z}\}$. Show that $\Gamma_s = \{\theta \to \phi^s(X_0(\theta)), \theta \in \mathbb{R}/\mathbb{Z}\}$ is also an invariant circle for F. We assume that X_0 is C^1 and $X'_0(\theta) \neq 0$ for all θ . Deduce that if Γ is an isolated invariant circle for F, then Γ is a trajectory of the differential equation.

 $F(\Gamma_s) \subset \Gamma_s$ as in previous question. We write

 $\phi^{s}(X_{0}(\theta)) = X_{0}(f(\theta, s))$ (E) for *s* small enough. We note that $f(\theta, s) = \theta + S(\theta, s)$ where $S(\theta, s) = o(s)$. *f* is C^{1} by the Implicit functions theorem. Differentiating (E) en s = 0 gives $F(X_{0}(\theta)) = X'_{0}(\theta)S'(\theta, 0)$ and so Γ is a trajectory of the differential equation.

Exercise

Existence theorem for HH equations (Tut)

We consider the HH equations

$$C\dot{V} = I - \bar{g}_{K}n^{4}(V - E_{K}) - \bar{g}_{Na}m^{3}h(V - E_{Na}) - \bar{g}_{L}(V - E_{L})$$
$$\dot{x} = \frac{1}{\tau_{x}(V)}(x_{\infty}(V) - x), \quad x \in \{m, n, h\}$$

Show that the solution is defined on \mathbb{R}^+ .

The gating variables x describe the proportion of open channels, hence $x \in [0, 1]$. It follows that the vector field is bounded as follows: $|\dot{V}| \le A|V| + B$ where A, B > 0. It is a well known result that the flow is defined on \mathbb{R}^+ , *e.g.* by using Gronwall lemma (to show the non-explosion of the flow).

Exercise

Firing rate of Integrate and Fire (IF) neurons

· We consider the following model of spiking neuron

$$\tau \frac{dV}{dt} = E_L - V + I$$

with threshold θ and reset V_r . Find the condition which ensures spiking. Find the firing rate as function of I.

$$V(t) = E_L + I + e^{-t/\tau}(V_0 - E_L - I) \text{ hence the condition } E_L + I > \theta. \text{ The firing rate } f$$

satisfies $V(1/f) = \theta$ with $V_0 = V_r$. One finds $f = \frac{1}{\tau} \log\left(\frac{E_L + I - V_r}{E_r + I - \theta}\right).$

Exercise

The θ -neuron (Tut)

It is an abstract model of spike generation. The potential is described by $\theta \in S^1 \equiv \mathbb{R}/2\pi\mathbb{Z}$ and satisfies:

$$\frac{d\theta}{dt} = 1 - \cos\theta + (1 + \cos\theta)I$$

where *I* is the injected current. We consider that a spike is emitted when θ crosses the point $\theta = \pi$.

- 1. Show that for I < 0, there are two equilibria for the system, one stable and the other unstable. Show that every solution not starting at the unstable equilibrium converge to the stable equilibrium.
- 2. In the case I > 0, show that there is no equilibrium. Conclude that the trajectories are periodic orbits with regular spiking.
- 3. What happens when I = 0?

1) We find $\theta_{\pm} = \pm acos \frac{1+I}{1-I}$ hence producing two solutions θ_{\pm} . Writing the equation as $\dot{\theta} = F(\theta)$, the (nonlinear) stability of the points is given by the sign of the real part of the eigenvalues of $dF(\theta_{\pm})$. One finds a single eigenvalue $\lambda_{\pm} = \pm \sqrt{-I}$. Hence θ_{+} is unstable. In between those points, the vector field does not vanish, this is used to show the convergence to the fixed point θ_{-} . 2) similar to 1). 3) There is a saddle-node bifurcation, the unique equilibrium $\theta = 0$ is unstable.

Exercise

Saddle node bifurcation, cf previous exercise

Assume f is a scalar C^k , $k \ge 2$ map in a neighborhood of (0, 0), and that it satisfies

$$f(0,0) = 0, \ \frac{\partial}{\partial u} f(0,0) = 0$$

and

$$\frac{\partial}{\partial \mu} f(0,0) := a \neq 0, \frac{\partial^2}{\partial^2 u} f(0,0) := 2b \neq 0$$

where μ is a parameter. Then, a *saddle-node bifurcation* occurs at $\mu = 0$. More precisely, the following properties hold in a neighborhood of 0 in \mathbb{R} for sufficiently small μ :

- if ab < 0 (resp. ab > 0) the differential equation has 2 equilibria $u_{\pm}(\epsilon), \epsilon = \sqrt{|\mu|}$ for $\mu > 0$ (resp., for $\mu < 0$), with opposite stabilities. Furthermore, the map $\epsilon \rightarrow u_{\pm}(\epsilon)$ is of class C^{k-2} in a neighborhood of 0, and $u_{\pm}(\epsilon) = O(\epsilon)$.
- if ab < 0 (resp. ab > 0) the differential equation has no equilibria for $\mu < 0$ (resp., for $\mu > 0$).
- 1. Write the Taylor expansion at order 2 for (u, μ) close to zero.
- 2. Study the truncated equation at order 2. Find the equilibria and their stability. Plot the equilibria as function of the parameter μ . The value $\mu = 0$ is called a **bifurcation point**.
- 3. Extend the results to the case where the reminder is not neglected anymore.

1) $f(u, \mu) = a\mu + b\mu^2 + o(|\mu| + u^2)$. 2) We look at $\dot{u} = a\mu + b\mu^2$. The equilibria are solutions of $a\mu + b\mu^2 = 0$. The rest follows like for the Exercise θ -neuron.

Exercise

Hopf bifurcation, birth of (spontaneous) oscillations

We consider the equation

$$\dot{z} = z(i + a - |z|^2)$$
 (E)

where $a \in \mathbb{R}$

- 1. Analyse the stability of equilibria.
- 2. Show that when a > 0, the is a (stable) periodic orbit.
- 3. (*Difficult*) Extend to the case $\dot{z} = f(z, \bar{z}, a)$ where the righthand side of (E) is the Taylor expansion of f at order 3.