ENS - Master MVA / Paris 6 - Master MathsBio

Tutorial 2

Romain VELTZ, romain.veltz@inria.fr

Exercice 1

Non-uniqueness of the center manifold

Consider the system

$$
\left\{\begin{array}{c}
\dot{x}=x^{2} \\
\dot{y}=-y
\end{array}\right.
$$

Show that $\mathcal{M}(\beta)=\{(x, y) \mid y=A(x)\}$ with $A(x)=\beta e^{\frac{1}{x}}$ si $x<0$ and $A(x)=0$ otherwise, is a family of center manifolds.
(Hint) You may write the equation satisfied by the center manifold.
$(0,0)$ is an equilibrium. The Jacobian at this equilibrium is $J=\operatorname{diag}(0,-1)$. Hence, the linear center space associated to the eigenvalue(s) of zero real part is spanned by $(1,0)$. The center manifold theorem states that there is an invariant manifold $\{u \cdot(1,0)+(0, A(u))\}=\{(u, A(u))\}$. The manifold is invariant meaning that if $\left(x_{0}, y_{0}\right)=\left(u_{0}, A\left(u_{0}\right)\right)$ for some u_{0}, then for all $t \geq 0,(x(t), y(t))=(u(t), A(u(t)))$. It gives $x(t)=u(t)$ and $y(t)=A(x(t))$. We differentiate w.r.t. time and get $x(t)^{2} A^{\prime}(x(t))=-A(x(t))$. If the manifold is defined over an open set, we can evaluate the previous equation at $t=0$ and this gives $x^{2} A^{\prime}(x)=-A(x)$ on an open set. Solving this ODE with the conditions $A(0)=A^{\prime}(0)=0$ gives the solution. Reciprocally, we check directly that the manifold is indeed invariant by the dynamics and tangent to $(0,0)$.

Exercice 2

Analytic center manifold

Show that the following system

$$
\begin{array}{r}
\dot{x}=-x^{3} \\
\dot{y}=-y+x^{2}
\end{array}
$$

does not have an analytic centre manifold.
Suppose that one has a centre manifold $\mathrm{y}=\mathrm{h}(\mathrm{x})$, where h is analytic at $\mathrm{x}=0$. Then $h(x)=\sum_{n=2}^{\infty} a_{n} x^{n}$ for small x and $h^{\prime}(x) x^{3}=h(x)-x^{2}$. One can show that $a_{2 n+1}=0$ for all n and that $a_{n+2}=n a_{n}$ for $\mathrm{n}=2,4, \ldots$, with $a_{2}=1$. The convergence radius is then zero.

Exercice 3

Slow-Fast systems

Consider the general system

$$
\left(E_{\epsilon}\right):\left\{\begin{array} { l }
{ \dot { x } = r (x , y , \epsilon) } \\
{ \dot { y } = } \\
{ \dot { y } (x , y , \epsilon) }
\end{array} \quad \left(\text { recall Fitzhugh-Nagumo }\left\{\begin{array}{ll}
\dot{v}= & v-\frac{v^{3}}{3}-w+I \\
\dot{w}= & \epsilon(v+a-b w)
\end{array}\right)\right.\right.
$$

The critical manifold is defined by $S=\{(x, y) \mid f(x, y, 0)=0\}$. It corresponds to a set of equilibria for the layer problem $\left(E_{0}\right)$.

1. Give a sufficient condition for the existence of a continuous function $h: \mathcal{D}_{0} \rightarrow \mathbb{R}^{m}$ with \mathcal{D}_{0} connected having a non-empty interior such that $\mathcal{M} \equiv\left\{(h(y), y), y \in \mathcal{D}_{0}\right\} \subset \mathcal{S} . \mathcal{M}$ is called a slow manifold.
2. We assume that \mathcal{M} is uniformly hyperbolic. That is: $\exists \sigma>0$ such that for all $y \in \mathcal{D}_{0}$, the eigenvalues are bounded away from zero: $\max _{\lambda \in \Sigma\left(\partial_{f} f(h(y), y)\right)}|\Re \lambda|>\sigma$. Prove that there exists for ϵ small enough, a locally invariant manifold close to ($h\left(y_{0}\right), y_{0}$) for some $y_{0} \in \mathcal{D}_{0}$:

$$
\mathcal{M}_{\epsilon}=\left\{(x, y): x=h(y, \epsilon), y \in \mathcal{V}\left(y_{0}\right)\right\}
$$

where $h(y, \epsilon)=h(y)+\mathcal{O}(\epsilon)$.
3. (difficult) Show that \mathcal{M}_{ϵ} is uniformly asymptotically stable if \mathcal{M} is.

Exercice 4

Adaptive exponential integrate-and-fire model (AdExp)

We consider the model

$$
\left\{\begin{array}{c}
C \dot{v}=-g_{L}\left(v-E_{L}\right)+g_{L} \Delta_{T} \exp \left(\frac{v-V_{T}}{\Delta_{T}}\right)-w+I \\
\tau_{w} \dot{w}=a(b v-w)
\end{array}\right.
$$

where $g_{L}, a, b>0$.
When the membrane potential v is high enough, the trajectory quickly diverges because of the exponential term. We call a spike a part of the trajectory with $V \approx \infty$. When a spike occurs (at an explosion time for the ODE), the membrane potential is instantaneously reset to some value v_{r} and the adaptation current is increased:

$$
\left\{\begin{array}{c}
v \rightarrow v_{r} \\
w \rightarrow w+d .
\end{array}\right.
$$

For simplicity, we restrict to the case $C=\tau_{w}=1$. We also assume that F is (at least) C^{3} and is strictly convex with $\lim _{-\infty} F=\infty$ and $\lim _{+\infty} F^{\prime}=+\infty$ and $\lim _{-\infty} F^{\prime}<0$. Hence, we look at the model:

$$
\left\{\begin{array}{c}
\dot{v}=F(v)-w+I \tag{1}\\
\dot{w}=a(b v-w)
\end{array}\right.
$$

1. Draw the nullclines. Discuss the dynamics according to the initial condition.
2. Write the equations satisfied by the equilibria.
3. Write $G_{b}(v)=F(v)-b v$. Show that G_{b} is strictly convex with a unique minimum $m(b)$ that is attained for $v=v^{*}(b)$
4. Show that m, v^{*} are at least C^{2}.
5. Compute the number of equilibria and their stability as function of I and b. In particular, show that:
6. For $I>-m(b)$, there are no equilibria
7. For $I=-m(b)$, there is a unique equilibrium $\left(v^{*}(b), w^{*}(b)\right)$ which is not hyperbolic. It is unstable if $b>a$.
8. If $I<-m(b)$, there are two equilibria $\left(v_{-}(I, b), v_{+}(I, b)\right)$ such that

$$
v_{-}(I, b)<v^{*}(b)<v_{+}(I, b)
$$

The equilibrium $v_{+}(I, b)$ is a saddle fixed point and the stability of $v_{-}(I, b)$ depends on I and $\operatorname{sign}(b-a)$. If $b<a$ then $v_{-}(I, b)$ is attracting. If $b>a$ there is a smooth curve $I^{*}(a, b)$ defined implicitly by $F^{\prime}\left(v_{-}\left(I^{*}(a, b)\right), b\right)=a$ such that if $I<I^{*}(a, b)$ then the equilibrium is attracting and if $I>I^{*}(a, b)$ then the equilibrium is repulsive.
6. Show that the curve $\{(b, I) \mid I=-m(b), a \neq b\}$ is a saddle-node bifurcation curve (when $\left.F^{\prime \prime}\left(v^{*}\right) \neq 0\right)$. Give the equation on the center manifold.
7. Assume $a>b$ and write v_{a} the unique solution of $F^{\prime}\left(v_{a}\right)=a$. If $F^{\prime \prime}\left(v_{a}\right) \neq 0$, show that there is a Andronov-Hopf bifurcation at v_{a} on the curve $A H=\left\{(b, I) ; b>a\right.$ and $\left.I=b v_{a}-F\left(v_{a}\right)\right\}$.
8. Take $a>0, b=a$ and assume that $F^{\prime \prime \prime}\left(v_{a}\right) \neq 0$. Show that the system has a BogdanovTakens bifurcation.
3) $\left.w=b v, F(v)-b v+I=G_{b}(v)+I=0,3\right) G_{b}$ is strictly convex and $G_{b} \xrightarrow{ \pm \infty}+\infty$ shows that G_{b} has a (unique) minimum. 4) Apply implicit function theorem to $\left.A(v, b)=f^{\prime}(v)-b .5\right)$ If $I>-m(b)$ then $F(v)-b v+I>0$ hence no equilibrium. For $I=-m(b), v \rightarrow F(v)-b v+I$ vanishes only at $v^{*}(b)$, thus $L(v)=\left[\begin{array}{cc}b & -1 \\ a b & -a\end{array}\right]$ is non hyperbolic. If $I<-m(b)$ then $F\left(v^{*}\right)-b v^{*}+I<F\left(v^{*}\right)-b v^{*}-m(b)=0$ and $F(v)-b v \xrightarrow{v \rightarrow+\infty}+\infty$ implies that there is $v_{+}(I, B)>v^{*}(b)$ which is an equilibrium. Idem for v_{-}from $F(v)-b v \xrightarrow{v \rightarrow-\infty}+\infty$. There can't be 3 fixed points because G_{b} is strictly convex (one can use the definition of a strictly convex function
$\left.f\left(t x_{1}+(1-t) x_{2}\right)<t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)\right)$. Recall that $\operatorname{det} L\left(v^{*}\right)=0$ and $\operatorname{det} L(v)=a\left(b-F^{\prime}(v)\right)$ is deacresing in $v . \operatorname{det} L\left(v_{+}\right)<0$ shows that v_{+}is a saddle. $\operatorname{det} L\left(v_{-}\right)>0$, the trace gives the sign of the eigenvalues $\operatorname{trace}\left(L\left(v_{-}\right)\right)=F^{\prime}\left(v_{-}\right)-a<F^{\prime}\left(v^{*}\right)-a=b-a$. Hence, if $b-a<0$, then v_{-}is attracting. In the case $b>a$, let us define $A(I, b, a)=F^{\prime}\left(v_{-}(I, b)\right)-a$. We have $\lim _{I \rightarrow-m(b)} A(I, a, b)=b-a>0$ and $\lim _{I \rightarrow-\infty} A(I, a, b)=\lim _{v \rightarrow-\infty}=F^{\prime}(v)-a<0$. Plus $I \rightarrow v_{-}(I, b)$ is increasing, so there exists a curve $I^{*}(a, b)$ such that for $I^{*}(a, b)<I<-m(b)$, the fixed point $v_{-}(I, b)$ is repulsive and for $I<I^{*}(a, b)$, the fixed point v_{-}is attracting.
6) Let us write the ODE (1) as $\dot{V}=R H S\left(V, \operatorname{par}_{s n}+\mu\right)$ where $\mu \approx 0$. We write par ${ }_{s n}$ the parameter values at the SN bifurcation point. The jacobian $L_{0} \equiv L\left(v^{*}\right)$ has eigenvalues $(0, b-a)$. We write $L_{0} \zeta=0$ with $\zeta=[1 / b, 1]$ and $L_{0}^{*} \zeta^{*}=0$ with $\zeta^{*}=[-a, 1]$. We
associate the following spectral projector P_{0}, on the kernel of L_{0} - the center part-, which commutes with $L_{0}: P_{0} U=<\zeta^{*}, U>\zeta$. We assume that the SN bifurcation occurs for parameters labelled with $*_{s n}$ like $I_{s n}, \cdots$

The equation on the center manifold is now studied. To this end, we write (1) as $\dot{U}=L_{0} U+R(U, \mu), R(0,0)=0, d R(0,0)=0$ where $(v, w)=\left(v^{*}, w^{*}\right)+U$, $L_{0}=L\left(v^{*}\right)$ and $R(U, \mu)=R H S\left(\left(v^{*}, b v^{*}\right)+U, \mu\right)-L_{0} U$. On the center manifold, we have $U=A \zeta+\Psi(A, \mu)$ which gives $\dot{A}=f(A, \mu)$ where $f(A, \mu)=P_{0} R(A \zeta+\Psi(A, \mu), \mu)$. Recall that $\Psi(0,0)=0$ and $\partial_{A} \Psi(0,0)=0$. Hence $\Psi(A, \mu)=O(\mu+A \cdot(\mu+A))$.

In view of the Saddle-Node bifurcation theorem, we have to find the coefficients of the Taylor expansion $f(A, \mu)=\alpha\left(I-I_{S n}\right)+\beta A^{2}+o\left(\left|I-I_{S n}\right|+A^{2}\right)$. (Note that the term $\left(I-I_{s n}\right) \cdot A$ is contained in the $o()$, indeed we do not need it).

Using a Taylor expansion of f, we first get
$\alpha=\left\langle\zeta^{*}, \partial_{I} R H S\left(v^{*}, w^{*}\right)\right\rangle=\left\langle\zeta^{*},[1,0]\right\rangle=-a<0$. As R and Ψ are quadratic, one gets $\beta \propto\left\langle\zeta^{*}, d^{2} R H S\left(v^{*}, w^{*}\right)[\zeta, \zeta]\right\rangle=-\frac{a}{b^{2}} F^{\prime \prime}\left(v^{*}\right) \neq 0$. These are the conditions for the application of the Saddle-node bifurcation.
7) If $a>b, F^{\prime}\left(v_{a}\right)=a$ has a unique solution. The sufficient conditions are $\operatorname{Trace}(L)=0=F^{\prime}\left(v_{H}\right)-a$ and $0<\operatorname{det} L=a\left(b-F^{\prime}\left(v_{H}\right)\right)$. Hence, we need $I=b v_{a}-F\left(v_{a}\right)$ to have two complex purely imaginary eigenvalues $\lambda(I)$. Let us check that $\partial_{I} \Re \lambda(I) \neq 0$. This is related to $\frac{1}{2} \partial_{I} \operatorname{trace}\left(L\left(v_{H}\right)\right)=\frac{1}{2} F^{\prime \prime}\left(v_{H}\right) \partial_{I} v_{-}(I, b)$. We conclude with $\partial_{I} v_{=} \frac{1}{b-F^{\prime}\left(v_{-}\right)}=\frac{1}{b-a}>0$. The Lyapunov coefficient is more involved...

Exercice 5

Normal Form

The idea is to find a polynomial change of variable which simplifies locally a nonlinear system, by removing the maximum number of monomials, this in order to analyze its dynamics more easily. We thus consider a differential equation:

$$
\begin{gather*}
\dot{x}=\mathbf{L} x+\mathbf{R}(x ; \alpha), \mathbf{L} \in \mathcal{L}\left(\mathbb{R}^{n}\right), \mathbf{R} \in C^{k}\left(\mathcal{V}_{x} \times \mathcal{V}_{\alpha}, \mathbb{R}^{m}\right) \tag{1}\\
\mathbf{R}(0 ; 0)=0, d \mathbf{R}(0 ; 0)=0
\end{gather*}
$$

The normal form Theorem is the following:

Then, $\forall p \in[2, k]$, there are neighborhoods \mathcal{V}_{1} and \mathcal{V}_{2} of 0 in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, such that for any $\alpha \in \mathcal{V}_{2}$, there is a polynomial $\Phi_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of degree p with the following properties:

1. The coefficients of the monomials of degree q in Φ_{α} are functions of α of class C^{k-q}, and

$$
\Phi_{0}(0)=0, d \Phi_{0}(0)=0
$$

2. For any $x \in \mathcal{V}_{1}$, the polynomial Change of Variable $x=y+\Phi_{\alpha}(y)$ transforms (1) into the normal form

$$
\dot{y}=\mathbf{L} y+\mathbf{N}_{\alpha}(y)+\rho(y, \alpha)
$$

where $\mathbf{N}_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a polynomials of degree p
3. The coefficients of the monomials of degree q in \mathbf{N}_{α} are functions of α of class C^{k-q}, and

$$
\mathbf{N}_{0}(0)=0, d_{x} \mathbf{N}_{0}(0)=0
$$

4. the equality $\mathbf{N}_{\alpha}\left(e^{\tau \mathbf{L}^{*}} y\right)=e^{t \mathbf{L}^{*}} \mathbf{N}_{\alpha}(y)$ holds for all $(t, y) \in \mathbb{R} \times \mathbb{R}^{n}$ and $\alpha \in \mathcal{V}_{2}$ 5. the maps ρ belongs to $C^{k}\left(\mathcal{V}_{1} \times \mathcal{V}_{2}, \mathbb{R}^{n}\right)$ and $\forall \alpha \in \mathcal{V}_{2}, \rho(y ; \alpha)=o\left(|y|^{p}\right)$

Consider the case Hopf case: $\mathbf{L}=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right], \omega>0$. In the basis $(\zeta, \bar{\zeta}), \zeta=(1,-i)$:
$\mathbf{L}=\left[\begin{array}{cc}i \omega & 0 \\ 0 & -i \omega\end{array}\right]$. Write $x=y+\Phi_{\alpha}(y)$, the change of variable with $y=A \zeta+\overline{A \zeta}$

1. Prove that $\mathbf{N}_{\alpha}(A \zeta+\overline{A \zeta})=A Q_{\alpha}\left(|A|^{2}\right) \zeta+\overline{A Q_{\alpha}}\left(|A|^{2}\right) \bar{\zeta}$ where Q_{α} is a polynomials.
2. Write the vector field at order 3 in A. Do you recognize something?
