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Exercice 1

Non-uniqueness of the center manifold

{ x = x?

y =y

Show that M(f) = {(x,y) | y = A(x)} with A(x) = ﬁe% six < 0and A(x) = 0 otherwise, is
a family of center manifolds.

Consider the system

(Hint) You may write the equation satisfied by the center manifold.

(0, 0) is an equilibrium. The Jacobian at this equilibrium is J = diag(0, —1). Hence, the
linear center space associated to the eigenvalue(s) of zero real part is spanned by (1, 0).
The center manifold theorem states that there is an invariant manifold

{u-(1,0)+ (0,A(n)} = {(u,A(u))}. The manifold is invariant meaning that if

(x0, yo) = (uy,A(uy)) for some uy, then for all t > 0, (x(¢), y(¢)) = (u(t), A(u(z))). It
gives x(7) = u(t) and y(t) = A(x(¢)). We differentiate w.r.t. time and get

x(£)?A’ (x(¢)) = —A(x(?)). If the manifold is defined over an open set, we can evaluate the
previous equation at ¢ = 0 and this gives x>A’ (x) = —A(x) on an open set. Solving this
ODE with the conditions A(0) = A’(0) = 0 gives the solution. Reciprocally, we check
directly that the manifold is indeed invariant by the dynamics and tangent to (0, 0).



Exercice 2

Analytic center manifold

Show that the following system

x=—-x

y=—y+x
does not have an analytic centre manifold.

Suppose that one has a centre manifold y = h(x), where h is analytic at x = 0. Then
(0]

h(x) = Y. a,x" for small x and /' (x)x* = h(x) — x>. One can show that a,,,,; = O for
n=2

all n and that a,,,» = na, forn=2,4,..., with a, = 1. The convergence radius is then

Zero.

Exercice 3

Slow-Fast systems

Consider the general system

= s Vs . p = ¥y i
(Ee) { ) J%.y.€) (recall Fitzhugh-Nagumo { voy owE )
y= 68()5,)’,6) W= €(V+a_bW)

The critical manifold is defined by S = {(x,y) | f(x,y,0) = 0}. It corresponds to a set of
equilibria for the layer problem (Ej)).

1. Give a sufficient condition for the existence of a continuous function & : Dy — R™ with
D, connected having a non-empty interior such that M = {(h(y),y), y € Dy} C S. M
is called a slow manifold.

2. We assume that M is uniformly hyperbolic. That is: 36 > 0 such that for all y € Dy, the

eigenvalues are bounded away from zero: ~ max |RA| > o. Prove that there exists
AEZ(0.f (h(y).y))

for € small enough, a locally invariant manifold close to (h(yg), yo) for some yy € Dy:
M, = {0, y) 1 x=h(y,€), y € V(yo)}

where h(y, €) = h(y) + O(e).
3. (difficult) Show that M. is uniformly asymptotically stable if M is.



1) Implicit functions theorem. 2) Application of the center manifold theorem where the
parameter is taken to be €.

Exercice 4

Adaptive exponential integrate-and-fire model (AdExp)

We consider the model

Cv=—-g (v—E)+ g Ar exp( ) —w+1

V—VT
Ar
T,Ww = a(bv — w).
where g;,a,b > 0.

When the membrane potential v is high enough, the trajectory quickly diverges because of the
exponential term. We call a spike a part of the trajectory with V' & oo0. When a spike occurs (at
an explosion time for the ODE), the membrane potential is instantaneously reset to some value
v, and the adaptation current is increased:

{ V=,

w—w+d.

For simplicity, we restrict to the case C = 7,, = 1. We also assume that F is (at least) C>
and is strictly convex with lim ¥ = oo and lim F/ = +o00 and lim F’ < 0. Hence, we look

—00 +oo —00
at the model:
v=Fv)—-w+1
{ =ro (1)
w = a(bv —w).

1. Draw the nullclines. Discuss the dynamics according to the initial condition.

2. Write the equations satisfied by the equilibria.

3. Write G,(v) = F(v) — bv. Show that G, is strictly convex with a unique minimum m(b)
that is attained for v = v*(b)

4. Show that m, v* are at least C2.

5. Compute the number of equilibria and their stability as function of I and b. In particular,
show that:

1. For I > —m(b), there are no equilibria
2. ForI = —m(b), there is a unique equilibrium (v*(b), w* (b)) which is not hyperbolic.
It is unstable if b > a.



3. If I < —m(b), there are two equilibria (v_(I, b),v,., b)) such that
v_(I,b) < v*(b) < vi(I,b)

The equilibrium v (I, b) is a saddle fixed point and the stability of v_(I, b) depends
onl and sign(b — a). If b < athen v_(I, b) is attracting. If b > a there is a smooth
curve I *(a, b) defined implicitly by F’ (v_(I*(a, b)), b) = a suchthatif I < I*(a, b)
then the equilibrium is attracting and if I > I*(a, b) then the equilibrium is repulsive.

6. Show that the curve {(b,I) | I = —m(b),a # b} is a saddle-node bifurcation curve (when
F"(v*) # 0). Give the equation on the center manifold.

7. Assume a > b and write v, the unique solution of F'(v,) = a. If F”(v,) # 0, show that
there is a Andronov-Hopf bifurcation at v, on the curve
AH = {(b,]);b >aand I = bv, — F(v,)}.

8. Take a > 0,b = a and assume that F (v,) # 0. Show that the system has a Bogdanov-
Takens bifurcation.

Yyw=bv,F(v)—bv+1=G,(v)+1=0,3)G, is strictly convex and G, = +oo
shows that G}, has a (unique) minimum. 4) Apply implicit function theorem to

AW, b) =f'(v) = b.5) It I > —m(b) then F(v) — bv + I > 0 hence no equilibrium. For
-1
—a
hyperbolic. If I < —m(b) then F(v*) — bv* + 1 < F(v*) — bv* — m(b) = 0 and

b
I = —m(b),v — F(v) — bv + I vanishes only at v*(b), thus L(v) = [ ) ] is non
a

F()—bv 2% 1o implies that there is v..(I, B) > v*(b) which is an equilibrium. Idem

for v_ from F'(v) — by "5%° 0. There can't be 3 fixed points because Gy, is strictly

convex (one can use the definition of a strictly convex function

fxy+ (1 —=0xp) <tf(xy)+ (1 —1)f(xy)). Recall that det L(v*) = 0 and

det L(v) = a(b — F'(v)) is deacresing in v. det L(v,) < 0 shows that v, is a saddle.

det L(v_) > 0, the trace gives the sign of the eigenvalues

trace(L(v_)) = F'(v_) —a < F'(v*) —a = b — a.Hence, itb —a < 0, then v_ is

attracting. In the case b > a, let us define A(I, b,a) = F'(v_(I, b)) — a. We have
lim A(,a,b)=b—a> 0 and [l_ir_nooA(I, a,b)y= lim = F'(v) —a < 0. Plus

I——m(b) oo
I — v_(I, b) is increasing, so there exists a curve I *(a, b) such that for

I*(a,b) < I < —m(b), the fixed point v_(I, b) is repulsive and for I < I*(a, b), the fixed
point v_ is attracting.

6) Let us write the ODE (1) as V= RHS(V, parg, + p) where u = 0. We write pary, the

parameter values at the SN bifurcation point. The jacobian Ly = L(v*) has eigenvalues
(0,b — a). We write Lo = 0 with { = [1/b, 1] and L™ = 0 with {* = [—a, 1]. We



associate the following spectral projector P, on the kernel of L - the center part-, which
commutes with Ly : PoU =< {*, U > {. We assume that the SN bifurcation occurs for
parameters labelled with s, like [, -

The equation on the center manifold is now studied. To this end, we write (1) as

U = LyU + R(U, u), R(0,0) = 0, dR(0,0) = 0 where (v, w) = (v*,w*) + U,

Ly = L(v*) and R(U, u) = RHS((v*,bv*) + U, u) — Lo U. On the center manifold, we
have U = A{ + W(A, u) which givesA = f(A, ) where

f(A, u) = PhR(AL + W(A, u), p). Recall that ¥(0, 0) = 0 and d4 ¥(0, 0) = 0. Hence
YA, ) =0@u+A-(u+A).

In view of the Saddle-Node bifurcation theorem, we have to find the coefficients of the
Taylor expansion f(A, u) = a(l — I,) + pA> + o (|I — 1, | +A? ) (Note that the term
(I — I,,) - A is contained in the o(), indeed we do not need it).

Using a Taylor expansion of f, we first get
a= (", g RASWV*,w*)) = ({*,[1,0]) = —a < 0. As R and ¥ are quadratic, one
gets B « (*, d?RHS(v, w*)[{, {]) = —h%F”(v*) # 0. These are the conditions for

the application of the Saddle-node bifurcation.

7)lfa > b, F'(v,) = a has a unique solution. The sufficient conditions are

Trace(L) =0 = F'(vg) —a and 0 < detL = a(b — F'(vy)). Hence, we need

I = bv, — F(v,) to have two complex purely imaginary eigenvalues A(/). Let us check
that 0, RA(I) # 0. This is related to %dltrace(L(vH)) = %F”(VH)OIV_(I, b). We

conclude with d;v_ = ﬁ > 0. The Lyapunov coefficient is more involved...

1
- b—F’(v,)
Exercice 5

Normal Form

The idea is to find a polynomial change of variable which simplifies locally a nonlinear system,
by removing the maximum number of monomials, this in order to analyze its dynamics more
easily. We thus consider a differential equation:

x=Lx+R(x;a), L € LR, Re CYV, xV,,R™) (1)
R(0;0) = 0, dR(0;0) =0

The normal form Theorem is the following:



Then, Vp € [2, k], there are neighborhoods V; and V, of 0 in R" and R™, respectively,
such that for any a € V,, there is a polynomial ®, : R" — R" of degree p with the
following properties:

1. The coefficients of the monomials of degree g in @, are functions of  of class Cck1,
and

Dy(0) =0, dDy(0) =0

2. For any x € V), the polynomial Change of Variable x = y + ®,(y) transforms (1)
into the normal form

y=Ly+ N, + pQ,a)

where N, : R" — R" is a polynomials of degree p
3. The coefficients of the monomials of degree g in N, are functions of a of class Cck,
and

No(0) =0, dNo(0) =0

4. the equality N, (e y) = "N, (y) holds for all (£, y) € R X R" and @ € V,
. the maps p belongs to CX(V; X V,, R") and Va € V,, p(y; a) = o(|y|")

9]

0

_“’] . @ > 0.Inthe basis (¢, &), £ = (1, —i):
o 0

Consider the case Hopf case: L = [

: 0 ¢
L= [’g’ . ] . Write x = y + @, (), the change of variable with y = A{ + A(
—iw

1. Prove that N, (A{ + E) = AQ,(|AI*)¢ + AQ, (|A|*)E where Q, is a polynomials.
2. Write the vector field at order 3 in A . Do you recognize something?



