ENS - Master MVA / Paris 6 - Master Maths-Bio

Tutorial 2

Romain VELTZ, romain.veltz@inria.fr

Exercice 1

Non-uniqueness of the center manifold

Consider the system

$$\begin{cases} \dot{x} = x^2 \\ \dot{y} = -y \end{cases}$$

Show that $\mathcal{M}(\beta) = \{(x, y) \mid y = A(x)\}$ with $A(x) = \beta e^{\frac{1}{x}}$ si x < 0 and A(x) = 0 otherwise, is a family of center manifolds.

(Hint) You may write the equation satisfied by the center manifold.

(0, 0) is an equilibrium. The Jacobian at this equilibrium is J = diag(0, -1). Hence, the linear center space associated to the eigenvalue(s) of zero real part is spanned by (1, 0). The center manifold theorem states that there is an invariant manifold $\{u \cdot (1, 0) + (0, A(u))\} = \{(u, A(u))\}$. The manifold is invariant meaning that if $(x_0, y_0) = (u_0, A(u_0))$ for some u_0 , then for all $t \ge 0$, (x(t), y(t)) = (u(t), A(u(t))). It gives x(t) = u(t) and y(t) = A(x(t)). We differentiate *w.r.t.* time and get $x(t)^2 A'(x(t)) = -A(x(t))$. If the manifold is defined over an open set, we can evaluate the previous equation at t = 0 and this gives $x^2 A'(x) = -A(x)$ on an open set. Solving this ODE with the conditions A(0) = A'(0) = 0 gives the solution. Reciprocally, we check directly that the manifold is indeed invariant by the dynamics and tangent to (0, 0).

Analytic center manifold

Show that the following system

$$\dot{x} = -x^3$$
$$\dot{y} = -y + x^2$$

does not have an analytic centre manifold.

Suppose that one has a centre manifold y = h(x), where h is analytic at x = 0. Then $h(x) = \sum_{n=2}^{\infty} a_n x^n$ for small x and $h'(x)x^3 = h(x) - x^2$. One can show that $a_{2n+1} = 0$ for all n and that $a_{n+2} = na_n$ for n = 2, 4, ..., with $a_2 = 1$. The convergence radius is then zero.

Exercice 3

Slow-Fast systems

Consider the general system

$$(E_{\epsilon}): \begin{cases} \dot{x} = f(x, y, \epsilon) \\ \dot{y} = \epsilon g(x, y, \epsilon) \end{cases} \qquad \left(\text{recall Fitzhugh-Nagumo} \begin{cases} \dot{v} = v - \frac{v^3}{3} - w + I \\ \dot{w} = \epsilon (v + a - bw) \end{cases} \right)$$

The *critical manifold* is defined by $S = \{(x, y) | f(x, y, 0) = 0\}$. It corresponds to a set of equilibria for the *layer* problem (E_0) .

- 1. Give a sufficient condition for the existence of a continuous function $h : \mathcal{D}_0 \to \mathbb{R}^m$ with \mathcal{D}_0 connected having a non-empty interior such that $\mathcal{M} \equiv \{(h(y), y), y \in \mathcal{D}_0\} \subset S$. \mathcal{M} is called a *slow manifold*.
- 2. We assume that \mathcal{M} is uniformly hyperbolic. That is: $\exists \sigma > 0$ such that for all $y \in \mathcal{D}_0$, the eigenvalues are bounded away from zero: $\max_{\lambda \in \Sigma(\partial_x f(h(y), y))} |\Re \lambda| > \sigma$. Prove that there exists for c small enough a locally invariant manifold close to $(h(y_0), y_0)$ for some $y_0 \in \mathcal{D}_0$:

for ϵ small enough, a locally invariant manifold close to $(h(y_0), y_0)$ for some $y_0 \in \mathcal{D}_0$:

$$\mathcal{M}_{\epsilon} = \{ (x, y) : x = h(y, \epsilon), y \in \mathcal{V}(y_0) \}$$

where $h(y, \epsilon) = h(y) + \mathcal{O}(\epsilon)$.

3. (difficult) Show that \mathcal{M}_{ϵ} is uniformly asymptotically stable if \mathcal{M} is.

1) Implicit functions theorem. 2) Application of the center manifold theorem where the parameter is taken to be ϵ .

Exercice 4

Adaptive exponential integrate-and-fire model (AdExp)

We consider the model

$$\begin{cases} C\dot{v} = -g_L(v - E_L) + g_L\Delta_T \exp\left(\frac{v - V_T}{\Delta_T}\right) - w + I\\ \tau_w \dot{w} = a(bv - w). \end{cases}$$

where $g_L, a, b > 0$.

When the membrane potential v is high enough, the trajectory quickly diverges because of the exponential term. We call a spike a part of the trajectory with $V \approx \infty$. When a spike occurs (at an explosion time for the ODE), the membrane potential is instantaneously reset to some value v_r and the adaptation current is increased:

$$\begin{cases} v \to v_r \\ w \to w + d \end{cases}$$

For simplicity, we restrict to the case $C = \tau_w = 1$. We also assume that F is (at least) C^3 and is strictly convex with $\lim_{n \to \infty} F = \infty$ and $\lim_{n \to \infty} F' = +\infty$ and $\lim_{n \to \infty} F' < 0$. Hence, we look at the model:

$$\begin{cases} \dot{v} = F(v) - w + I\\ \dot{w} = a(bv - w). \end{cases}$$
(1)

- 1. Draw the nullclines. Discuss the dynamics according to the initial condition.
- 2. Write the equations satisfied by the equilibria.
- 3. Write $G_b(v) = F(v) bv$. Show that G_b is strictly convex with a unique minimum m(b) that is attained for $v = v^*(b)$
- 4. Show that m, v^* are at least C^2 .
- 5. Compute the number of equilibria and their stability as function of I and b. In particular, show that:
 - 1. For I > -m(b), there are no equilibria
 - 2. For I = -m(b), there is a unique equilibrium $(v^*(b), w^*(b))$ which is not hyperbolic. It is unstable if b > a.

3. If I < -m(b), there are two equilibria $(v_{-}(I, b), v_{+}(I, b))$ such that

$$v_{-}(I, b) < v^{*}(b) < v_{+}(I, b)$$

The equilibrium $v_+(I, b)$ is a saddle fixed point and the stability of $v_-(I, b)$ depends on I and sign(b-a). If b < a then $v_-(I, b)$ is attracting. If b > a there is a smooth curve $I^*(a, b)$ defined implicitly by $F'(v_-(I^*(a, b)), b) = a$ such that if $I < I^*(a, b)$ then the equilibrium is attracting and if $I > I^*(a, b)$ then the equilibrium is repulsive.

- 6. Show that the curve $\{(b, I) \mid I = -m(b), a \neq b\}$ is a saddle-node bifurcation curve (when $F''(v^*) \neq 0$). Give the equation on the center manifold.
- 7. Assume a > b and write v_a the unique solution of $F'(v_a) = a$. If $F''(v_a) \neq 0$, show that there is a Andronov-Hopf bifurcation at v_a on the curve $AH = \{(b, I); b > a \text{ and } I = bv_a F(v_a)\}.$
- 8. Take a > 0, b = a and assume that $F'''(v_a) \neq 0$. Show that the system has a Bogdanov-Takens bifurcation.

3) $w = bv, F(v) - bv + I = G_b(v) + I = 0, 3)$ G_b is strictly convex and $G_b \xrightarrow{\pm \infty} +\infty$ shows that G_b has a (unique) minimum. 4) Apply implicit function theorem to A(v, b) = f'(v) - b. 5) If I > -m(b) then F(v) - bv + I > 0 hence no equilibrium. For $I = -m(b), v \to F(v) - bv + I$ vanishes only at $v^*(b)$, thus $L(v) = \begin{bmatrix} b & -1 \\ ab & -a \end{bmatrix}$ is non hyperbolic. If I < -m(b) then $F(v^*) - bv^* + I < F(v^*) - bv^* - m(b) = 0$ and $F(v) - bv \xrightarrow{v \to +\infty} +\infty$ implies that there is $v_+(I, B) > v^*(b)$ which is an equilibrium. Idem for v_- from $F(v) - bv \xrightarrow{v \to -\infty} +\infty$. There can't be 3 fixed points because G_b is strictly convex (one can use the definition of a strictly convex function $f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2)$. Recall that det $L(v^*) = 0$ and det L(v) = a(b - F'(v)) is deacresing in v. det $L(v_+) < 0$ shows that v_+ is a saddle. $\det L(v_{-}) > 0$, the trace gives the sign of the eigenvalues $trace(L(v_{-})) = F'(v_{-}) - a < F'(v^{*}) - a = b - a$. Hence, if b - a < 0, then v_{-} is attracting. In the case b > a, let us define $A(I, b, a) = F'(v_{-}(I, b)) - a$. We have $\lim_{I \to -m(b)} A(I, a, b) = b - a > 0 \text{ and } \lim_{I \to -\infty} A(I, a, b) = \lim_{v \to -\infty} = F'(v) - a < 0. \text{ Plus}$ $I \rightarrow v_{-}(I, b)$ is increasing, so there exists a curve $I^{*}(a, b)$ such that for $I^*(a, b) < I < -m(b)$, the fixed point $v_{-}(I, b)$ is repulsive and for $I < I^*(a, b)$, the fixed point v_{-} is attracting.

6) Let us write the ODE (1) as $\dot{V} = RHS(V, par_{sn} + \mu)$ where $\mu \approx 0$. We write par_{sn} the parameter values at the SN bifurcation point. The jacobian $L_0 \equiv L(v^*)$ has eigenvalues (0, b - a). We write $L_0\zeta = 0$ with $\zeta = [1/b, 1]$ and $L_0^*\zeta^* = 0$ with $\zeta^* = [-a, 1]$. We

associate the following spectral projector P_0 , on the kernel of L_0 - the center part-, which commutes with $L_0: P_0 U = \langle \zeta^*, U \rangle \zeta$. We assume that the SN bifurcation occurs for parameters labelled with $*_{sn}$ like I_{sn}, \cdots

The equation on the center manifold is now studied. To this end, we write (1) as $\dot{U} = L_0 U + R(U, \mu), R(0, 0) = 0, dR(0, 0) = 0$ where $(v, w) = (v^*, w^*) + U$, $L_0 = L(v^*)$ and $R(U, \mu) = RHS((v^*, bv^*) + U, \mu) - L_0 U$. On the center manifold, we have $U = A\zeta + \Psi(A, \mu)$ which gives $\dot{A} = f(A, \mu)$ where $f(A, \mu) = P_0 R(A\zeta + \Psi(A, \mu), \mu)$. Recall that $\Psi(0, 0) = 0$ and $\partial_A \Psi(0, 0) = 0$. Hence $\Psi(A, \mu) = O(\mu + A \cdot (\mu + A))$.

In view of the Saddle-Node bifurcation theorem, we have to find the coefficients of the Taylor expansion $f(A, \mu) = \alpha(I - I_{sn}) + \beta A^2 + o(|I - I_{sn}| + A^2)$. (Note that the term $(I - I_{sn}) \cdot A$ is contained in the o(), indeed we do not need it).

Using a Taylor expansion of f, we first get

 $\alpha = \langle \zeta^*, \partial_I RHS(v^*, w^*) \rangle = \langle \zeta^*, [1, 0] \rangle = -a < 0. \text{ As } R \text{ and } \Psi \text{ are quadratic, one}$ gets $\beta \propto \langle \zeta^*, d^2 RHS(v^*, w^*)[\zeta, \zeta] \rangle = -\frac{a}{b^2} F''(v^*) \neq 0.$ These are the conditions for the application of the Saddle-node bifurcation.

7) If a > b, $F'(v_a) = a$ has a unique solution. The sufficient conditions are $Trace(L) = 0 = F'(v_H) - a$ and $0 < \det L = a(b - F'(v_H))$. Hence, we need $I = bv_a - F(v_a)$ to have two complex purely imaginary eigenvalues $\lambda(I)$. Let us check that $\partial_I \Re \lambda(I) \neq 0$. This is related to $\frac{1}{2} \partial_I trace(L(v_H)) = \frac{1}{2}F''(v_H)\partial_I v_-(I, b)$. We conclude with $\partial_I v_= \frac{1}{b-F'(v_-)} = \frac{1}{b-a} > 0$. The Lyapunov coefficient is more involved...

Exercice 5

Normal Form

The idea is to find a polynomial change of variable which simplifies locally a nonlinear system, by removing the maximum number of monomials, this in order to analyze its dynamics more easily. We thus consider a differential equation:

$$\dot{x} = \mathbf{L}x + \mathbf{R}(x;\alpha), \ \mathbf{L} \in \mathcal{L}(\mathbb{R}^n), \ \mathbf{R} \in C^k(\mathcal{V}_x \times \mathcal{V}_\alpha, \mathbb{R}^m)$$
(1)
$$\mathbf{R}(0;0) = 0, \ d\mathbf{R}(0;0) = 0$$

The normal form **Theorem** is the following:

Then, $\forall p \in [2, k]$, there are neighborhoods \mathcal{V}_1 and \mathcal{V}_2 of 0 in \mathbb{R}^n and \mathbb{R}^m , respectively, such that for any $\alpha \in \mathcal{V}_2$, there is a polynomial $\Phi_{\alpha} : \mathbb{R}^n \to \mathbb{R}^n$ of degree p with the following properties:

1. The coefficients of the monomials of degree q in Φ_{α} are functions of α of class C^{k-q} , and

$$\Phi_0(0) = 0, \ d\Phi_0(0) = 0$$

2. For any $x \in \mathcal{V}_1$, the polynomial **Change of Variable** $x = y + \Phi_{\alpha}(y)$ transforms (1) into the normal form

$$\dot{y} = \mathbf{L}y + \mathbf{N}_{\alpha}(y) + \rho(y, \alpha)$$

where $\mathbf{N}_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ is a polynomials of degree p

3. The coefficients of the monomials of degree q in \mathbb{N}_{α} are functions of α of class C^{k-q} , and

$$\mathbf{N}_0(0) = 0, \ d_x \mathbf{N}_0(0) = 0$$

- 4. the equality $\mathbf{N}_{\alpha}(e^{t\mathbf{L}^*}y) = e^{t\mathbf{L}^*}\mathbf{N}_{\alpha}(y)$ holds for all $(t, y) \in \mathbb{R} \times \mathbb{R}^n$ and $\alpha \in \mathcal{V}_2$
- 5. the maps ρ belongs to $C^k(\mathcal{V}_1 \times \mathcal{V}_2, \mathbb{R}^n)$ and $\forall \alpha \in \mathcal{V}_2, \ \rho(y; \alpha) = o(|y|^p)$

Consider the case Hopf case: $\mathbf{L} = \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix}$, $\omega > 0$. In the basis $(\zeta, \overline{\zeta}), \zeta = (1, -i)$: $\mathbf{L} = \begin{bmatrix} i\omega & 0 \\ 0 & -i\omega \end{bmatrix}$. Write $x = y + \Phi_{\alpha}(y)$, the change of variable with $y = A\zeta + \overline{A\zeta}$

- 1. Prove that $\mathbf{N}_{\alpha}(A\zeta + \overline{A\zeta}) = AQ_{\alpha}(|A|^2)\zeta + \overline{AQ_{\alpha}}(|A|^2)\overline{\zeta}$ where Q_{α} is a polynomials.
- 2. Write the vector field at order 3 in A. Do you recognize something?