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Consider the system

Show that  with  si  and  otherwise, is
a family of center manifolds.

(Hint) You may write the equation satisfied by the center manifold.

 is an equilibrium. The Jacobian at this equilibrium is . Hence, the
linear center space associated to the eigenvalue(s) of zero real part is spanned by .
The center manifold theorem states that there is an invariant manifold 

. The manifold is invariant meaning that if 
 for some , then for all , . It

gives  and . We differentiate w.r.t. time and get 
. If the manifold is defined over an open set, we can evaluate the

previous equation at  and this gives  on an open set. Solving this
ODE with the conditions  gives the solution. Reciprocally, we check
directly that the manifold is indeed invariant by the dynamics and tangent to .
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Exercice 1

Non-uniqueness of the center manifold

{ =ẋ x2

= −y.ẏ

(β) = {(x, y) | y = A(x)} A(x) = βe
1
x x < 0 A(x) = 0

(0, 0) J = diag(0, −1)
(1, 0)

{u ⋅ (1, 0) + (0, A(u))} = {(u, A(u))}
( , ) = ( , A( ))x0 y0 u0 u0 u0 t ≥ 0 (x(t), y(t)) = (u(t), A(u(t)))

x(t) = u(t) y(t) = A(x(t))
x(t (x(t)) = −A(x(t)))2A′

t = 0 (x) = −A(x)x2 A′

A(0) = (0) = 0A′

(0, 0)



Show that the following system

does not have an analytic centre manifold.

Suppose that one has a centre manifold y = h(x), where h is analytic at x = 0. Then 

 for small x and . One can show that  for

all n and that  for n = 2,4,..., with . The convergence radius is then
zero.

Consider the general system

The critical manifold is defined by . It corresponds to a set of
equilibria for the layer problem .

1. Give a sufficient condition for the existence of a continuous function  with 
 connected having a non-empty interior such that . 

is called a slow manifold.
2. We assume that  is uniformly hyperbolic. That is:  such that for all , the

eigenvalues are bounded away from zero: . Prove that there exists

for  small enough, a locally invariant manifold close to  for some :

where .
3. (difficult) Show that  is uniformly asymptotically stable if  is.

Exercice 2

Analytic center manifold

= −ẋ x3

= −y +ẏ x2

h(x) = ∑
n=2

∞
an xn (x) = h(x) −h′ x3 x2 = 0a2n+1

= nan+2 an = 1a2

Exercice 3

Slow-Fast systems

( ) : { (recall Fitzhugh-Nagumo { )Eϵ
=ẋ
=ẏ

f (x, y, ϵ)
ϵg(x, y, ϵ)

=v̇

=ẇ

v − − w + Iv3

3

ϵ (v + a − bw)

 = {(x, y) | f (x, y, 0) = 0}
( )E0

h : →0 ℝm

0  ≡ {(h(y), y),  y ∈ } ⊂ 0 

 ∃σ > 0 y ∈ 0
|ℜλ| > σmax

λ∈Σ( f (h(y),y))∂x

ϵ (h( ), )y0 y0 ∈y0 0

= {(x, y) : x = h(y, ϵ),  y ∈ ( )}ϵ y0

h(y, ϵ) = h(y) + (ϵ)
ϵ 



1) Implicit functions theorem. 2) Application of the center manifold theorem where the
parameter is taken to be .

We consider the model

where .

When the membrane potential  is high enough, the trajectory quickly diverges because of the
exponential term. We call a spike a part of the trajectory with . When a spike occurs (at
an explosion time for the ODE), the membrane potential is instantaneously reset to some value 

 and the adaptation current is increased:

For simplicity, we restrict to the case . We also assume that  is (at least) 
and is strictly convex with  and  and . Hence, we look

at the model:

1. Draw the nullclines. Discuss the dynamics according to the initial condition.
2. Write the equations satisfied by the equilibria.
3. Write . Show that  is strictly convex with a unique minimum 

that is attained for 
4. Show that  are at least .
5. Compute the number of equilibria and their stability as function of  and . In particular,

show that:

1. For , there are no equilibria
2. For , there is a unique equilibrium  which is not hyperbolic.

It is unstable if .

ϵ

Exercice 4

Adaptive exponential integrate-and-fire model (AdExp)

{ C = − (v − ) + exp( ) − w + Iv̇ gL EL gLΔT
v−VT

ΔT

= a(bv − w).τwẇ

, a, b > 0gL

v
V ≈ ∞

vr

{ v → vr

w → w + d.

C = = 1τw F C3

F = ∞lim
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= +∞lim
+∞

F ′ < 0lim
−∞

F ′

{ = F(v) − w + Iv̇
= a(bv − w).ẇ

(1)

(v) = F(v) − bvGb Gb m(b)
v = (b)v∗

m, v∗ C2

I b

I > −m(b)
I = −m(b) ( (b), (b))v∗ w∗

b > a
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3. If , there are two equilibria  such that

The equilibrium  is a saddle fixed point and the stability of  depends
on  and . If  then  is attracting. If  there is a smooth
curve  defined implicitly by  such that if 
then the equilibrium is attracting and if  then the equilibrium is repulsive.

6. Show that the curve  is a saddle-node bifurcation curve (when
). Give the equation on the center manifold.

7. Assume  and write  the unique solution of . If , show that
there is a Andronov-Hopf bifurcation at  on the curve 

.
8. Take  and assume that . Show that the system has a Bogdanov-

Takens bifurcation.

3) , 3)  is strictly convex and 
shows that  has a (unique) minimum. 4) Apply implicit function theorem to 

. 5) If  then  hence no equilibrium. For 

,  vanishes only at , thus  is non

hyperbolic. If  then  and 

 implies that there is  which is an equilibrium. Idem

for  from . There can't be 3 fixed points because  is strictly
convex (one can use the definition of a strictly convex function 

). Recall that  and 
 is deacresing in .  shows that  is a saddle. 

, the trace gives the sign of the eigenvalues 
. Hence, if , then  is

attracting. In the case , let us define . We have 
 and . Plus 

 is increasing, so there exists a curve  such that for 
, the fixed point  is repulsive and for , the fixed

point  is attracting.

6) Let us write the ODE (1) as  where . We write  the
parameter values at the SN bifurcation point. The jacobian  has eigenvalues 

. We write  with  and  with . We

I < −m(b) ( (I, b), (I, b))v− v+

(I, b) < (b) < (I, b)v− v∗ v+

(I, b)v+ (I, b)v−
I sign(b − a) b < a (I, b)v− b > a

(a, b)I ∗ ( ( (a, b)), b) = aF ′ v− I ∗ I < (a, b)I ∗

I > (a, b)I ∗

{(b, I) | I = −m(b), a ≠ b}
( ) ≠ 0F″ v∗

a > b va ( ) = aF ′ va ( ) ≠ 0F″ va
va

AH = {(b, I); b > a and I = b − F( )}va va

a > 0, b = a ( ) ≠ 0F ‴ va

w = bv, F(v) − bv + I = (v) + I = 0Gb Gb +∞Gb →±∞

Gb
A(v, b) = (v) − bf ′ I > −m(b) F(v) − bv + I > 0

I = −m(b) v → F(v) − bv + I (b)v∗ L(v) = [ ]b
ab

−1
−a

I < −m(b) F( ) − b + I < F( ) − b − m(b) = 0v∗ v∗ v∗ v∗

F(v) − bv +∞→v→+∞ (I, B) > (b)v+ v∗

v− F(v) − bv +∞→v→−∞ Gb

f (t + (1 − t) ) < t f ( ) + (1 − t) f ( )x1 x2 x1 x2 det L( ) = 0v∗

det L(v) = a(b − (v))F ′ v det L( ) < 0v+ v+
det L( ) > 0v−
trace(L( )) = ( ) − a < ( ) − a = b − av− F ′ v− F ′ v∗ b − a < 0 v−

b > a A(I, b, a) = ( (I, b)) − aF ′ v−
A(I, a, b) = b − a > 0lim

I→−m(b)
A(I, a, b) = = (v) − a < 0lim

I→−∞
lim

v→−∞
F ′

I → (I, b)v− (a, b)I ∗

(a, b) < I < −m(b)I ∗ (I, b)v− I < (a, b)I ∗

v−

= RHS(V, pa + μ)V̇ rsn μ ≈ 0 parsn
≡ L( )L0 v∗

(0, b − a) ζ = 0L0 ζ = [1/b, 1] = 0L∗
0 ζ∗ = [−a, 1]ζ∗



associate the following spectral projector , on the kernel of  - the center part-, which
commutes with : . We assume that the SN bifurcation occurs for
parameters labelled with  like 

The equation on the center manifold is now studied. To this end, we write (1) as 
 where , 

 and . On the center manifold, we
have  which gives  where 

. Recall that  and . Hence 
.

In view of the Saddle-Node bifurcation theorem, we have to find the coefficients of the
Taylor expansion . (Note that the term 

 is contained in the , indeed we do not need it).

Using a Taylor expansion of , we first get 
. As  and  are quadratic, one

gets . These are the conditions for
the application of the Saddle-node bifurcation.

7) If ,  has a unique solution. The sufficient conditions are 
 and . Hence, we need 

 to have two complex purely imaginary eigenvalues . Let us check
that . This is related to . We
conclude with . The Lyapunov coefficient is more involved...

The idea is to find a polynomial change of variable which simplifies locally a nonlinear system,
by removing the maximum number of monomials, this in order to analyze its dynamics more
easily. We thus consider a differential equation:

The normal form Theorem is the following:

P0 L0
L0 U =< , U > ζP0 ζ∗

∗sn , ⋯Isn

= U + R(U, μ), R(0, 0) = 0, dR(0, 0) = 0U̇ L0 (v, w) = ( , ) + Uv∗ w∗

= L( )L0 v∗ R(U, μ) = RHS(( , b ) + U, μ) − Uv∗ v∗ L0

U = Aζ + Ψ(A, μ) = f (A, μ)Ȧ
f (A, μ) = R(Aζ + Ψ(A, μ), μ)P0 Ψ(0, 0) = 0 Ψ(0, 0) = 0∂A
Ψ(A, μ) = O(μ + A ⋅ (μ + A))

f (A, μ) = α(I − ) + β + o (|I − | + )Isn A2 Isn A2

(I − ) ⋅ AIsn o()

f
α = ⟨ , RHS( , )⟩ = ⟨ , [1, 0]⟩ = −a < 0ζ∗ ∂I v∗ w∗ ζ∗ R Ψ

β ∝ ⟨ , RHS( , )[ζ, ζ]⟩ = − ( ) ≠ 0ζ∗ d2 v∗ w∗ a
b2 F″ v∗

a > b ( ) = aF ′ va
Trace(L) = 0 = ( ) − aF ′ vH 0 < det L = a(b − ( ))F ′ vH
I = b − F( )va va λ(I)

ℜλ(I) ≠ 0∂I trace(L( )) = ( ) (I, b)1
2 ∂I vH

1
2 F″ vH ∂I v−

= > 0∂I v=
1

b− ( )F ′ v−

1
b−a

Exercice 5

Normal Form

= Lx + R(x; α),  L ∈ ( ),  R ∈ ( × , ) (1)ẋ ℝn Ck x α ℝm

R(0; 0) = 0,  dR(0; 0) = 0



Then, , there are neighborhoods  and  of  in  and , respectively,
such that for any , there is a polynomial  of degree  with the
following properties:

1. The coefficients of the monomials of degree  in  are functions of  of class ,
and

2. For any , the polynomial Change of Variable  transforms (1)
into the normal form

where  is a polynomials of degree 
3. The coefficients of the monomials of degree  in  are functions of  of class ,

and

4. the equality  holds for all  and 
5. the maps  belongs to  and 

Consider the case Hopf case: . In the basis : 

. Write , the change of variable with 

1. Prove that  where  is a polynomials.
2. Write the vector field at order 3 in  . Do you recognize something?

∀p ∈ [2, k] 1 2 0 ℝn ℝm

α ∈ 2 : →Φα ℝn ℝn p

q Φα α Ck−q

(0) = 0,  d (0) = 0Φ0 Φ0

x ∈ 1 x = y + (y)Φα

= Ly + (y) + ρ(y, α)ẏ Nα

: →Nα ℝn ℝn p
q Nα α Ck−q

(0) = 0,   (0) = 0N0 dxN0

( y) = (y)Nα etL∗ etL∗ Nα (t, y) ∈ ℝ × ℝn α ∈ 2
ρ ( × , )Ck 1 2 ℝn ∀α ∈ ,  ρ(y; α) = o(|y )2 |p

L = [ ] ,  ω > 00
ω

−ω
0

(ζ, ), ζ = (1, −i)ζ̄

L = [ ]iω
0

0
−iω

x = y + (y)Φα y = Aζ + Aζ
⎯ ⎯⎯⎯⎯⎯

(Aζ + ) = A (|A )ζ + (|A )Nα Aζ
⎯ ⎯⎯⎯⎯⎯

Qα |2 AQα
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

|2 ζ̄ Qα
A


