
Romain VELTZ, romain.veltz@inria.fr

Assume that the jacobian of a DS at  is given by its Jordan normal form 

where .

1. Show that the polynomial  of the normal form is [ N(u)=(AP(A),BP(A)+Q(A)) ] where 
are real-valued polynomials, satisfying .

2. Using a change of variables, show that the DS can be modified into

This is the main mechanism to produce cortical oscillations with two interacting populations
(PING mechanism). Consider two populations E/I with the following dynamics
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where  is the sigmoid function

1. Write the equation for the equilibrium. Write the jacobian  of the system (Hint: 
).

2. Write the linear conditions for the Hopf bifurcation and find a way to compute the Hopf
bifurcation curves in the plane .

3. Can we do the same for the Saddle-Node bifurcation curve?

This is the main mechanism to produce cortical oscillations with inhibitory neurons (ING
mechanism). Consider one population of such neurons I with the following dynamics

where  is the sigmoid function (see above),  is the nonlinear gain and . On se
restreint au cas .

1. Show that there is a unique negative stationary state  that is monotonic in .
2. Write the linear equation around  and look for perturbation . Find an equation for .
3. Write the solutions of this equations using the different solutions  of the equation 

. This function is called the Lambert function. You have computed the spectrum.
4. We change of method. Give a necessary condition on  in order to have a Hopf

bifurcation. In this case, show that the critical delay is .

5. Show that  is increasing. Conclude on the existence of a Hopf
bifurcation when increasing the nonlinear gain.
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Delayed inhibition
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