ENS - Master MVA / Paris 6 - Master MathsBio

Tutorial 3

Romain VELTZ, romain.veltz@inria.fr

Exercice

Bogdanov-Takens Normal form

Assume that the jacobian of a DS at $u=0$ is given by its Jordan normal form $L=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ where $u=(A, B) \in \mathbb{R}^{2}$.

1. Show that the polynomial N of the normal form is [$\mathrm{N}(\mathrm{u})=(\mathrm{AP}(\mathrm{A}), \mathrm{BP}(\mathrm{A})+\mathrm{Q}(\mathrm{A}))]$ where P, Q are real-valued polynomials, satisfying $P(0)=Q(0)=Q^{\prime}(0)=0$.
2. Using a change of variables, show that the DS can be modified into

$$
\left\{\begin{aligned}
d A / d t & =\tilde{B} \\
d \tilde{B} / d t & =\tilde{B} P_{1}(A)+Q_{1}(A)+\tilde{\rho}_{1}(A, \tilde{B})
\end{aligned}\right.
$$

Exercice

Wilson-Cowan

This is the main mechanism to produce cortical oscillations with two interacting populations (PING mechanism). Consider two populations E/I with the following dynamics

$$
\left\{\begin{aligned}
\dot{E} & =-E+S\left(J_{E E} E+J_{E I} I+\theta_{E}\right) \\
\dot{I} & =-I+S\left(J_{I E} E+J_{I I} I+\theta_{I}\right)
\end{aligned}\right.
$$

where S is the sigmoid function

$$
S(x)=\frac{1}{1+e^{-x}} .
$$

1. Write the equation for the equilibrium. Write the jacobian L of the system (Hint: $S^{\prime}=S(1-S)$).
2. Write the linear conditions for the Hopf bifurcation and find a way to compute the Hopf bifurcation curves in the plane $\left(\theta_{E}, \theta_{I}\right)$.
3. Can we do the same for the Saddle-Node bifurcation curve?

Exercice

Delayed inhibition

This is the main mechanism to produce cortical oscillations with inhibitory neurons (ING mechanism). Consider one population of such neurons I with the following dynamics

$$
\tau \dot{I}(t)=-I(t)+J S(\sigma I(t-D)+\theta) \in \mathbb{R}
$$

where S is the sigmoid function (see above), $\sigma \geq 0$ is the nonlinear gain and $J<0$. On se restreint au cas $\tau=1$.

1. Show that there is a unique negative stationary state $I_{\sigma}^{e q}$ that is monotonic in σ.
2. Write the linear equation around $I_{\sigma}^{e q}$ and look for perturbation $e^{\lambda t} U$. Find an equation for λ.
3. Write the solutions of this equations using the different solutions $W_{k}(z)$ of the equation $w e^{w}=z$. This function is called the Lambert function. You have computed the spectrum.
4. We change of method. Give a necessary condition on $\sigma J S^{\prime}$ in order to have a Hopf bifurcation. In this case, show that the critical delay is $D=\frac{1}{\sqrt{J^{2}-1}}\left(\pi-\arccos \left(\frac{1}{|J|}\right)\right)$.
5. Show that $\sigma \rightarrow \sigma S^{\prime}\left(\sigma I_{\sigma}^{e q}+\theta\right)$ is increasing. Conclude on the existence of a Hopf bifurcation when increasing the nonlinear gain.
