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We consider a NFE on a compact domain  with a sigmoid  nonlinearity:

1. We assume that . Prove existence / uniqueness of the solution in the
space . Hint: show that it is globally Lipschitz. (This implies that the solution is
defined globally, ie on .)

2. Show that the nonlinearity is .

We focus on the case  on 

3. Write the equations satisfied by the equilibrium. Are they finite dimensional?

4. Write a simplified set of equations for the dynamics. Hint: decompose the space with the
range of the integral convolutional operator.

5. Consider a stationary state. Can you study its stability despite the fact that the equations
are infinite dimensional? (Can you find a case where you can...?)

1/ This is a consequence of Cauchy Lip. theorem. We check that the right-hand side 
is globally Lipschitz by noting that . Hence 
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Exercise

Around the neural field equation (NFE)

Ω ⊂ ℝp S

V(x, t) = −V(x, t) + w(x, y)S(V(y, t))dy.d
dt ∫Ω

w ∈ ( , ℝ)C0 Ω2

 = (Ω, ℝ)
ℝ

C1

w(x, y) = + cos(x − y)w0 w1 Ω = (−π, π)

F(V)
:= sup (x) < ∞Sm S′



. It implies that the NFE has a
solution globally defined in time. This is a classical consequence of the Cauchy-Lipschitz
theorem but not of the finite time explosion (because we are in infinite dimension). 2/ We
focus on . From Taylor with integral reminder, we have 

. This shows that 

. One can
check that the linear operator  is continuous on  and is thus the
candidate for the differential of  at . It remains to check that the integral term is .

The reminder is  and its norm is bounded by 
. This shows that  is differentiable.

3/ Stationary solutions are 
.

Hence, there are  so that . We can plug this
expression in the integral equation and project on . It gives 3 equations in 

. The problem is 3d. 4) Same technics as 3). 5) Let us imagine that  is a
stationary solution. In the general case, one has to adapt a bit the technics but it is
essentially the same idea. Then, the stability is linked to the spectrum of the linearized
operator . Hence, we focus on the second term. This operator
is of rank 3. In fact, in the orthogonal of , it is zero. One can thus restrict
the study on  where we find that the spectrum is . All in all,
the spectrum of the linearized operator is . The stability
analysis is then straightforward.

We consider a neural field equation on the real line

in the case where  is the Heaviside function and .

The connectivity kernel  is a real even function which is integrable on . We
define  and .

We further define . An equilibrium  is said localized if 

‖F( ) − F( ) ≤ (1 + ‖w )‖ −V1 V2 ‖∞ Sm ‖∞ V1 V2 ‖∞

G(V) = W ⋅ S(V)
S(V + U) − S(V) − U (V) = (1 − t) (V + tU) dtS′ ∫ 1

0 S(2) U2

W ⋅ S(V + U) − W ⋅ S(V) − W ⋅ U (V) = (1 − t)W (V + tU) dtS′ ∫ 1
0 S(2) U2

L = U → W ⋅ U (V)S′ 

G V o(U)
(1 − t)W ⋅ (V + tU) dt∫ 1

0 S(2) U2

(x)‖w ‖U = o(U)sup
x

S(2) ‖∞ ‖2 G

V(x) = w(x − y)S(V(y))dy = S(V) + sin(x) sin S(V) + cos(x) cos S(V)∫Ω w0 ∫Ω w1 ∫Ω w1 ∫Ω
, ,v0 v1 v2 V(x) = + cos + sinv0 v1 v2

1, cos, sin
, ,v0 v1 v2 = 0V eq

LU = −U + W ⋅ ( (0)U)S′

Vect(1, cos, sin)
Vect(1, cos, sin) {2π , π }w0 w1

{−1, −1 + 2π , −1 + π }w0 w1

Exercise

Around the neural field equation of Amari type

V(x, t) = −V(x, t) + w(x − y)S(V(y, t))dy + hd
dt ∫ℝ

S(v) = 1v>0 h ∈ ℝ

w ∈ (ℝ, ℝ) ℝ
W(x) = w∫ x

0 := W(x)W∞ lim
x→∞

R(V) = {x,  V(x) > 0} V eq



 with . In this case, we can always assume  by translation
invariance.

1. An equilibrium  such that  exists if and only if .
2. An equilibrium  such that  exists if and only if .
3. We here assume the following behavior of  on .  is strictly increasing towards its

maximal value  and is then stricly decreasing and converging to . Show that
an equilibrium  such that  with  exists if and only if  and 

.
4. Find solutions with a periodic support, namely 

under the restriction . Find an equation satisfied by .
5. Find traveling fronts  where the speed  and the waveform  have to

be determined. One can introduce traveling wave coordinate  and assume 
.

6. Interface dynamics. We assume that a solution is such that 
and that . We assume that  is even. Find an equation satisfied by  in
the case .

7. In the case of a non-convolutional kernel, ,
find the number of stationary solutions as function of their width.

This behavior is called snaking of stationary solutions.

1/ If such solution exists then  which requires . On the contrary, if ,
then  is a stationary solution of the NFE.

2/ If there is such solution then it satisfies .
On the contrary, if , then  is such solution.

3/ A localised solution is such that 
. This solution is continuous, hence

it satisfies  which implies . Finally,  when 
which implies . On the contrary, when  holds and , one finds 

. Moreover, such  is . Using the hypothesis on the shape of ,
one can prove that  is positive on the interval  and
negative elsewhere, provided that .

4/ These solutions take the form 
.

The threshold condition reads . This gives 
.

R( ) = ( , )V eq a1 a2 ∈ ℝai = 0a1

V eq R( ) = ∅V eq h ≤ 0
V eq R( ) = ℝV eq 2 > −hW∞

W ℝ+ W
WM < 0W∞
V eq R( ) = (0, a)V eq a > 0 h < 0

W(a) + h = 0
R( ) = [−b + nL, b + nL]V weq ∪∞

n=−∞
2b < L b
V(x, t) = U(x − ct) c U

ξ = x − ct
c > 0

R(V(x, t)) = (−a(t), a(t))
0 ≤ (x) ≤ 1V0 V0 a
h = 0

w(x, y) = (1 + a cos(y)), 0 < a < 1e−|x−y|

V(x) = h h ≤ 0 h ≤ 0
V(x) = h

V(x) = w(x − y)dy + h = 2 + h > 0∫ℝ W∞
2 + h > 0W∞ V(x) = 2 + hW∞

V(x) = w(x − y)dy + h = W(x) − W(x − a) + h∫ a
0
V(0) = V(a) = 0 W(a) + h = 0 V → h x → ∞

h ≤ 0 W(a) = −h h ≤ 0
V(a) = V(0) = 0 V C1 W

V(x) = W(x) − W(x − a) + h (0, a)
h ≤ 0

U(x) = w(x − y)dy + h = (W(x + b + nL) − W(x − b + nL)) + h∑n∈ℤ ∫ b+nL
−b+nL ∑n∈ℤ

U(±b + nL) = 0
h + (W(2b + nL) − W(nL)) = 0∑n∈ℤ

(ξ) = [κ − ( − W(y)) dy]f
ξ/c −y/c

∞



5/ the solution satisfies . Assuming 

 and requiring boundedness implies . The
traveling wave is thus of the form .

6/ By definition  hence  where we defined 
. One gets . This equation is not well

defined for . We now get an expression for . We define  and
find  which allows to find 

. This gives us a
closed system describing the evolution of  with the initial conditions 

 as long as 

7) The width  of the solution satisfies . Writing 
, one finds for , 

. Hence, there are infinitely many s
solution for .

We consider . Let us write the Taylor expansion of  for a given :

with ,  and .

1. Assume that there is a center manifold  and that we perform a Normal form simplification
on the center manifold with change of variable . Write the nonlinear
mapping . Write the equation satisfied by the combined change of variables (Hint:
use the same technics as for the center manifold function ).

2. (Difficult) Assume that we have a Hopf bifurcation. We write  with 
 where  is the coordinate on the center manifold after the normal form transform.

Assume that the normal form reads . Finally
write  and . Show that 

 and 

(ξ) = [κ − ( − W(y)) dy]Uf eξ/c 1
c ∫ ξ

0 e−y/c W∞

c > 0 κ = ( − W(y)) dy1
c ∫ ∞

0 e−y/c W∞

(ξ) = ( − W(y + ξ)) dyUf
1
c ∫ ∞

0 e−y/c W∞

V(±a(t), t) = 0 ±x(t) (t) + V(±a(t), t) = 0a′ ∂t

±α(t) = u(±a(t), t)∂x (t) = − [W(2a(t)) − κ]a′ 1
α(t)

α(t) = 0 α z(x, t) = V(x, t)∂x
z(x, t) = −z(x, t) + w(x + a(t)) − w(x − a(t))∂t

α(t) = (a(t)) + [w(a(t) + a(s)) − w(a(t) − a(s))]dsu′
0 e−t e−t ∫ t

0 es

a, α
a(0) = l, α(0) = (l)u′

0 α < 0.

a h + w(a, y)dy = 0∫ a
0

W(x) = w(x, y)dy∫ x
0 x > 0

W(x) = 1 − − + a cos(x)/2 + a sin(x)/2e−x a
2 e−x a

h ≈ 1

Exercise

Normal form and center manifold

= Au + R(u, μ)du
dt R p

R(u) = [ , ] + o (‖u ) ,   = 0∑
2≤q+l≤p

Rql u(q) μ(l) ‖p R01

=Rql
1

q!l!
∂R
u μ∂q ∂l ≡ (u, ⋯ , u) ∈u(q) q

h ≡ (μ, ⋯ , μ) ∈μ(l) ( )ℝmpar l

Ψ
= + ( )uc v0 Φμ v0

→ uv0
Ψ

(t) = A(t)ζ +v0 A(t)ζ
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A ∈ ℂ v0

= A (aμ + b|A ) + O((|μ| + |A )Ȧ |2 |2 )2

u = + ( , μ)v0 Ψ̃ v0 ( , μ) = + ⋯Ψ̃ v0 ∑
p,q,r

Ψp,q,rAp Āq μr

a = ⟨ (ζ) + 2 (ζ, ), ⟩R11 R20 Ψ001 ζ∗

b = ⟨2 (ζ, ) + 2 ( , ) + (ζ, ζ, ), ⟩20 110 20
⎯ ⎯⎯

110 30
⎯ ⎯⎯ ∗



. For this, find the first terms 
 by identifying the monomials of  in the equation derived in 1).

3. We consider the Ring Model of orientation tuning  on the circle, ie
,  is periodic and  is a smooth bounded

function such that . Assume further that  is even.

1. Show that the vector field is equivariant w.r.t  and 
. What is the group generated by ?

2. ( ) Assume that there a Pitchfork bifurcation at . Compute the normal form
as function of the parameters of the model. For this, one has to adapt the previous
question 2).

ATTENTION ICI NOTATIONS

1. we build a reduced equation for  with the center manifold correction :

This reduced equation is

Then, we apply a change of variable to 

to bring the reduced equation to a normal form given by:

where  is a polynomial of some degree  such that 
and . We write

The nonlinear function  is solution of the next equations:

where  is the operator which takes the first  terms in the Taylor expansion in

b = ⟨2 (ζ, ) + 2 ( , ) + (ζ, ζ, ), ⟩R20 Ψ110 R20 ζ
⎯ ⎯⎯

Ψ110 R30 ζ
⎯ ⎯⎯

ζ∗

, . . .Ψ001 Ψ̃

= −V + J ⋆ (V)V̇ S0
J ⋆ (V)(θ) = J(θ − ) (V( )dS0 ∫ π

−π θ′ S0 θ′ θ′ V S0

(0) = 0S0 w

⋅ V(θ) = V(θ − t)Tt
R ⋅ V(θ) = V(−θ) , RTt
⋆⋆ μ = μ0

∈uc c Ψ

u = + Ψ( , μ), Ψ( , μ) ∈ .uc uc uc h

= A + R ( + Ψ( , μ), μ) .duc

dt
uc Pc uc uc

uc

= + ( ), ∈uc v0 Φμ v0 v0 c

= A + ( ) + ρ( , μ),dv0

dt
|c

v0 Nμ v0 v0

Nμ p (0) = 0,   (0) = 0N0 DvN0
ρ( , μ) = o(‖ )v0 v0‖p

u = + ( , μ), ( , μ) ≡ ( ) + Ψ( + ( ), μ) ∈ v0 Ψ̃ v0 Ψ̃ v0 Φμ v0 v0 Φμ v0

Ψ̃

(NF) : { ( , μ)A − A ( , μ) + ( ) = Q( )Dv0
Ψ̃ v0 |c

v0 Ψ̃ v0 Nμ v0 v0

Q( ) ≡ [R( + ( , μ), μ) − ( , μ) ( )]v0 Πp v0 Ψ̃ v0 Dv0
Ψ̃ v0 Nμ v0

Πp p + 1



the variable .

2. Under these assumptions, we have that  and that the associated center
subspace  is two-dimensional spanned by the eigenvectors  associated with iω
and −iω, respectively. We set . By identifying in (NF) the

terms of order , , and , we obtain

Here the operators  and  are invertible so that the equation above are
uniquely determined. Next we identify terms of order  and  and find

Since iω is a simple isolated eigenvalue of , the range of  is of
codimension 1, so that we can solve these equations, and determine Ψ1,0,1 and
Ψ2,0,0, provided the right hand sides satisfy one solvability condition. It is this
solvability condition which allows to compute the coefficients  and . In the case
when  has an adjoint , acting in the dual space , then the solvability condition
is that the right hand sides are orthogonal to the kernel of the adjoint  of 

. The kernel of  is one-dimensional, just as the kernel of 
, spanned by  that we choose such that . Here ⟨·,·⟩

denotes the duality product between X and . For example 
.

3. By symmetry arguments, the bifurcation is of “pitchfork” type and the central part is
given by  where .
We use complex coordinates  with  and , the normal
form is given by:

We write . The Taylor expansion reads

v0

= {±iω}Σ0

E0 ζ, ζ̄
≡Ψ̃ ∑

p,q,r
Ψp,q,rAp Āq μr

O(μ) O( )A2 O(A )Ā

−L =Ψ2,0,0 R0,1

(2iω − L) = (ζ, ζ)Ψ2,0,0 R2,0

−L = 2 (ζ, ζ)Ψ1,1,0 R2,0 ,̄

L 2iω − L
O(μA) O( )A2 Ā

(iω − L) = −aζ + (ζ) + 2 (ζ, )Ψ1,0,1 R1,1 R2,0 Ψ0,0,1

(iω − L) = −bζ + (ζ, ) + 2 ( , ) + 3 (ζ, ζ, )Ψ2,1,0 R2,0 Ψ1,1,0 R2,0 ζ̄ Ψ2,0,0 R3,0 ζ̄

L (iω − L)

a b
L L∗ X∗

(−iω − )L∗

(iω − L) (−iω − )L∗

(iω − L) ∈ζ∗  ∗ ⟨ζ, ⟩ = 1ζ∗

X∗

a = ⟨ (ζ) + 2 (ζ, ), ⟩R1,1 R2,0 Ψ0,0,1 ζ∗

= Vect(cos(2·), sin(2·)) = kerE0 Lμ0
= −Id + μ (μ (μ))JLμ S′ vf

0
= Aζ + c. cU0 ζ = e2iθ A ∈ 

= A ( + |A ) + h. o. t.Ȧ σ − σ0

σ0
χ3 |2

V(θ, t) = + + Ψ( , μ)vf
0 U0 U0

Ψ( , μ) = + + A + + + + AU0 Ψ20A2 Ψ̄20Ā2 Ψ11 Ā Ψ30A3 Ψ̄30Ā3 Ψ21A2 Ā Ψ̄21 Ā2

R(U, μ) = − − U + J ⋆ S(μU + μ ) −f f
0



We write . We note that 
. We look at the coefficient  in (NF), it satisfies

The coefficient  gives

The coefficient  gives

The coefficient  gives

It remains to solve the above convolution equations. We write  and 
. We find  hence 

. The final

result is

R(U, μ) = − − U + J ⋆ S(μU + μ ) −vf
0 vf

0 Lμ0

( , μ)A = 0Dv0 Ψ̃ v0 |c
v0 A|A|2

bζ − = 2 (ζ, ) + 2 ( , ) + 3 ( , ζ, ζ).Lμ0
Ψ21 R20 Ψ11 R20 ζ̄ Ψ20 R30 ζ̄

A2

− = (ζ, ζ)Lμ0
Ψ20 R20

AĀ

− = (ζ, )Lμ0
Ψ11 R20 ζ̄

A3

− = (ζ, ) + ( , ζ, ζ).Lμ0
Ψ30 R20 Ψ20 R3 ζ̄

(θ) =en e2inθ

J ⋆ =en Jnen (ζ, ζ) = ( )J ⋆R2
1
2 μ2

0S(2) μ0vf
0 ζ2

= ζ + + = ζ + +Ψ20 α20 β20ζ̄ ( )μ2
0S (2) μ0vf

0 J2

2(−1+ ( )μ0S (1) μ0vf
0 J2

α20 β20ζ̄ ( )μ2
0S (2) μ0vf

0 J2

2(1− / )J2 J1

b = [ + ( ) ( + )]μ3
0J1

( )S(3) μ0vf
0

3
μ0S(2) μ0vf

0
J0

1 − /J0 J1

J2

2(1 − / )J2 J1


