ENS - Master MVA / Paris 6 - Master MathsBio

Tutorial 4

Romain VELTZ, romain.veltz@inria.fr

Exercise

Around the neural field equation (NFE)

We consider a NFE on a compact domain $\Omega \subset \mathbb{R}^{p}$ with a sigmoid S nonlinearity:

$$
\frac{d}{d t} V(x, t)=-V(x, t)+\int_{\Omega} w(x, y) S(V(y, t)) d y
$$

1. We assume that $w \in C^{0}\left(\Omega^{2}, \mathbb{R}\right)$. Prove existence / uniqueness of the solution in the space $\mathcal{C}=\mathcal{C}(\Omega, \mathbb{R})$. Hint: show that it is globally Lipschitz. (This implies that the solution is defined globally, ie on \mathbb{R}.)
2. Show that the nonlinearity is C^{1}.

We focus on the case $w(x, y)=w_{0}+w_{1} \cos (x-y)$ on $\Omega=(-\pi, \pi)$
3. Write the equations satisfied by the equilibrium. Are they finite dimensional?
4. Write a simplified set of equations for the dynamics. Hint: decompose the space with the range of the integral convolutional operator.
5. Consider a stationary state. Can you study its stability despite the fact that the equations are infinite dimensional? (Can you find a case where you can...?)

1/ This is a consequence of Cauchy Lip. theorem. We check that the right-hand side $F(V)$ is globally Lipschitz by noting that $S_{m}:=\sup S^{\prime}(x)<\infty$. Hence
$\left\|F\left(V_{1}\right)-F\left(V_{2}\right)\right\|_{\infty} \leq\left(1+S_{m}\|w\|_{\infty}\right)\left\|V_{1}-V_{2}\right\|_{\infty}$. It implies that the NFE has a solution globally defined in time. This is a classical consequence of the Cauchy-Lipschitz theorem but not of the finite time explosion (because we are in infinite dimension). 2/ We focus on $G(V)=W \cdot S(V)$. From Taylor with integral reminder, we have
$S(V+U)-S(V)-U S^{\prime}(V)=\int_{0}^{1}(1-t) S^{(2)}(V+t U) U^{2} d t$. This shows that
$W \cdot S(V+U)-W \cdot S(V)-W \cdot U S^{\prime}(V)=\int_{0}^{1}(1-t) W S^{(2)}(V+t U) U^{2} d t$. One can check that the linear operator $\mathbf{L}=U \rightarrow W \cdot U S^{\prime}(V)$ is continuous on \mathcal{C} and is thus the candidate for the differential of G at V. It remains to check that the integral term is $o(U)$. The reminder is $\int_{0}^{1}(1-t) W \cdot S^{(2)}(V+t U) U^{2} d t$ and its norm is bounded by $\sup S^{(2)}(x)\|w\|_{\infty}\|U\|^{2}=o(U)$. This shows that G is differentiable.
x
3/ Stationary solutions are
$V(x)=\int_{\Omega} w(x-y) S(V(y)) d y=w_{0} \int_{\Omega} S(V)+w_{1} \sin (x) \int_{\Omega} \sin S(V)+w_{1} \cos (x) \int_{\Omega} \cos S(V)$. Hence, there are v_{0}, v_{1}, v_{2} so that $V(x)=v_{0}+v_{1} \cos +v_{2} \sin$. We can plug this expression in the integral equation and project on $1, \cos , \sin$. It gives 3 equations in v_{0}, v_{1}, v_{2}. The problem is 3d.4) Same technics as 3). 5) Let us imagine that $V^{e q}=0$ is a stationary solution. In the general case, one has to adapt a bit the technics but it is essentially the same idea. Then, the stability is linked to the spectrum of the linearized operator $L U=-U+W \cdot\left(S^{\prime}(0) U\right)$. Hence, we focus on the second term. This operator is of rank 3. In fact, in the orthogonal of $\operatorname{Vect}(1, \cos , \sin)$, it is zero. One can thus restrict the study on $\operatorname{Vect}(1, \cos , \sin)$ where we find that the spectrum is $\left\{2 \pi w_{0}, \pi w_{1}\right\}$. All in all, the spectrum of the linearized operator is $\left\{-1,-1+2 \pi w_{0},-1+\pi w_{1}\right\}$. The stability analysis is then straightforward.

Exercise

Around the neural field equation of Amari type

We consider a neural field equation on the real line

$$
\frac{d}{d t} V(x, t)=-V(x, t)+\int_{\mathbb{R}} w(x-y) S(V(y, t)) d y+h
$$

in the case where $S(v)=\mathbf{1}_{v>0}$ is the Heaviside function and $h \in \mathbb{R}$.
The connectivity kernel $w \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ is a real even function which is integrable on \mathbb{R}. We define $W(x)=\int_{0}^{x} w$ and $W_{\infty}:=\lim _{x \rightarrow \infty} W(x)$.

We further define $R(V)=\{x, V(x)>0\}$. An equilibrium $V^{e q}$ is said localized if
$R\left(V^{e q}\right)=\left(a_{1}, a_{2}\right)$ with $a_{i} \in \mathbb{R}$. In this case, we can always assume $a_{1}=0$ by translation invariance.

1. An equilibrium $V^{e q}$ such that $R\left(V^{e q}\right)=\emptyset$ exists if and only if $h \leq 0$.
2. An equilibrium $V^{e q}$ such that $R\left(V^{e q}\right)=\mathbb{R}$ exists if and only if $2 W_{\infty}>-h$.
3. We here assume the following behavior of W on \mathbb{R}^{+}. W is strictly increasing towards its maximal value W_{M} and is then stricly decreasing and converging to $W_{\infty}<0$. Show that an equilibrium $V^{e q}$ such that $R\left(V^{e q}\right)=(0, a)$ with $a>0$ exists if and only if $h<0$ and $W(a)+h=0$.
4. Find solutions with a periodic support, namely $R\left(V^{\text {weq }}\right)=\cup_{n=-\infty}^{\infty}[-b+n L, b+n L]$ under the restriction $2 b<L$. Find an equation satisfied by b.
5. Find traveling fronts $V(x, t)=U(x-c t)$ where the speed c and the waveform U have to be determined. One can introduce traveling wave coordinate $\xi=x-c t$ and assume $c>0$.
6. Interface dynamics. We assume that a solution is such that $R(V(x, t))=(-a(t), a(t))$ and that $0 \leq V_{0}(x) \leq 1$. We assume that V_{0} is even. Find an equation satisfied by a in the case $h=0$.
7. In the case of a non-convolutional kernel, $w(x, y)=e^{-|x-y|}(1+a \cos (y)), 0<a<1$, find the number of stationary solutions as function of their width.

This behavior is called snaking of stationary solutions.

1/ If such solution exists then $V(x)=h$ which requires $h \leq 0$. On the contrary, if $h \leq 0$, then $V(x)=h$ is a stationary solution of the NFE.

2/ If there is such solution then it satisfies $V(x)=\int_{\mathbb{R}} w(x-y) d y+h=2 W_{\infty}+h>0$. On the contrary, if $2 W_{\infty}+h>0$, then $V(x)=2 W_{\infty}+h$ is such solution.

3 / A localised solution is such that
$V(x)=\int_{0}^{a} w(x-y) d y+h=W(x)-W(x-a)+h$. This solution is continuous, hence it satisfies $V(0)=V(a)=0$ which implies $W(a)+h=0$. Finally, $V \rightarrow h$ when $x \rightarrow \infty$ which implies $h \leq 0$. On the contrary, when $W(a)=-h$ holds and $h \leq 0$, one finds $V(a)=V(0)=0$. Moreover, such V is C^{1}. Using the hypothesis on the shape of W, one can prove that $V(x)=W(x)-W(x-a)+h$ is positive on the interval $(0, a)$ and negative elsewhere, provided that $h \leq 0$.

4/ These solutions take the form
$U(x)=\sum_{n \in \mathbb{Z}} \int_{-b+n L}^{b+n L} w(x-y) \mathrm{d} y+h=\sum_{n \in \mathbb{Z}}(W(x+b+n L)-W(x-b+n L))+h$.
The threshold condition reads $U(\pm b+n L)=0$. This gives
$h+\sum_{n \in \mathbb{Z}}(W(2 b+n L)-W(n L))=0$.

5/ the solution satisfies $U_{f}(\xi)=\mathrm{e}^{\xi / c}\left[\kappa-\frac{1}{c} \int_{0}^{\xi} \mathrm{e}^{-y / c}\left(W_{\infty}-W(y)\right) \mathrm{d} y\right]$. Assuming $c>0$ and requiring boundedness implies $\kappa=\frac{1}{c} \int_{0}^{\infty} \mathrm{e}^{-y / c}\left(W_{\infty}-W(y)\right) \mathrm{d} y$. The traveling wave is thus of the form $U_{f}(\xi)=\frac{1}{c} \int_{0}^{\infty} \mathrm{e}^{-y / c}\left(W_{\infty}-W(y+\xi)\right) \mathrm{d} y$.

6/ By definition $V(\pm a(t), t)=0$ hence $\pm x(t) a^{\prime}(t)+\partial_{t} V(\pm a(t), t)=0$ where we defined $\pm \alpha(t)=\partial_{x} u(\pm a(t), t)$. One gets $a^{\prime}(t)=-\frac{1}{\alpha(t)}[W(2 a(t))-\kappa]$. This equation is not well defined for $\alpha(t)=0$. We now get an expression for α. We define $z(x, t)=\partial_{x} V(x, t)$ and find $\partial_{t} z(x, t)=-z(x, t)+w(x+a(t))-w(x-a(t))$ which allows to find $\alpha(t)=u_{0}^{\prime}(a(t)) \mathrm{e}^{-t}+\mathrm{e}^{-t} \int_{0}^{t} \mathrm{e}^{s}[w(a(t)+a(s))-w(a(t)-a(s))] \mathrm{d} s$. This gives us a closed system describing the evolution of a, α with the initial conditions $a(0)=l, \alpha(0)=u_{0}^{\prime}(l)$ as long as $\alpha<0$.
7) The width a of the solution satisfies $h+\int_{0}^{a} w(a, y) d y=0$. Writing
$W(x)=\int_{0}^{x} w(x, y) d y$, one finds for $x>0$,
$W(x)=1-e^{-x} \frac{a}{2}-e^{-x}+a \cos (x) / 2+a \sin (x) / 2$. Hence, there are infinitely many a s solution for $h \approx 1$.

Exercise

Normal form and center manifold

We consider $\frac{d u}{d t}=\mathbf{A} u+\mathbf{R}(u, \mu)$. Let us write the Taylor expansion of \mathbf{R} for a given p :

$$
\mathbf{R}(u)=\sum_{2 \leq q+l \leq p} \mathbf{R}_{q[}\left[u^{(q)}, \mu^{(l)}\right]+o\left(\|u\|^{p}\right), \mathbf{R}_{01}=0
$$

with $\mathbf{R}_{q l}=\frac{1}{q!!!} \frac{\partial \mathbf{R}}{\partial^{\prime} u^{\prime} \mu}, u^{(q)} \equiv(u, \cdots, u) \in \mathcal{Z}_{h}^{q}$ and $\mu^{(l)} \equiv(\mu, \cdots, \mu) \in\left(\mathbb{R}^{m_{p a r}}\right)^{l}$.

1. Assume that there is a center manifold Ψ and that we perform a Normal form simplification on the center manifold with change of variable $u_{c}=v_{0}+\Phi_{\mu}\left(v_{0}\right)$. Write the nonlinear mapping $v_{0} \rightarrow u$. Write the equation satisfied by the combined change of variables (Hint: use the same technics as for the center manifold function Ψ).
2. (Difficult) Assume that we have a Hopf bifurcation. We write $v_{0}(t)=A(t) \zeta+\overline{A(t) \zeta}$ with $A \in \mathbb{C}$ where v_{0} is the coordinate on the center manifold after the normal form transform. Assume that the normal form reads $\dot{A}=A\left(a \mu+b|A|^{2}\right)+O\left(\left(|\mu|+|A|^{2}\right)^{2}\right)$. Finally write $u=v_{0}+\tilde{\Psi}\left(v_{0}, \mu\right)$ and $\tilde{\Psi}\left(v_{0}, \mu\right)=\sum_{p, q, r} \Psi_{p, q, r} A^{p^{q}} \mu^{r}+\cdots$. Show that $a=\left\langle\mathbf{R}_{11}(\zeta)+2 \mathbf{R}_{20}\left(\zeta, \Psi_{001}\right), \zeta^{*}\right\rangle$ and
$b=\left\langle 2 \mathbf{R}_{20}\left(\zeta, \Psi_{110}\right)+2 \mathbf{R}_{20}\left(\bar{\zeta}, \Psi_{110}\right)+\mathbf{R}_{30}(\zeta, \zeta, \bar{\zeta}), \zeta^{*}\right\rangle$. For this, find the first terms Ψ_{001}, \ldots by identifying the monomials of $\tilde{\Psi}$ in the equation derived in 1).
3. We consider the Ring Model of orientation tuning $\dot{V}=-V+J \star S_{0}(V)$ on the circle, ie $J \star S_{0}(V)(\theta)=\int_{-\pi}^{\pi} J\left(\theta-\theta^{\prime}\right) S_{0}\left(V\left(\theta^{\prime}\right) d \theta^{\prime}, V\right.$ is periodic and S_{0} is a smooth bounded function such that $S_{0}(0)=0$. Assume further that w is even.
4. Show that the vector field is equivariant w.r.t $T_{t} \cdot V(\theta)=V(\theta-t)$ and $R \cdot V(\theta)=V(-\theta)$. What is the group generated by T_{t}, R ?
5. ($\star \star$) Assume that there a Pitchfork bifurcation at $\mu=\mu_{0}$. Compute the normal form as function of the parameters of the model. For this, one has to adapt the previous question 2).

ATTENTION ICI NOTATIONS

1. we build a reduced equation for $u_{c} \in \mathcal{X}_{c}$ with the center manifold correction Ψ :

$$
u=u_{c}+\Psi\left(u_{c}, \mu\right), \quad \Psi\left(u_{c}, \mu\right) \in \mathcal{Z}_{h}
$$

This reduced equation is

$$
\frac{d u_{c}}{d t}=\mathbf{A} u_{c}+P_{c} \mathbf{R}\left(u_{c}+\Psi\left(u_{c}, \mu\right), \mu\right)
$$

Then, we apply a change of variable to u_{c}

$$
u_{c}=v_{0}+\Phi_{\mu}\left(v_{0}\right), \quad v_{0} \in \mathcal{X}_{c}
$$

to bring the reduced equation to a normal form given by:

$$
\frac{d v_{0}}{d t}=\left.\mathbf{A}\right|_{\mathcal{X}_{c}} v_{0}+\mathbf{N}_{\mu}\left(v_{0}\right)+\rho\left(v_{0}, \mu\right)
$$

where \mathbf{N}_{μ} is a polynomial of some degree p such that $\mathbf{N}_{0}(0)=0, D_{v} \mathbf{N}_{0}(0)=0$ and $\rho\left(v_{0}, \mu\right)=o\left(\left\|v_{0}\right\|^{p}\right)$. We write

$$
u=v_{0}+\tilde{\Psi}\left(v_{0}, \mu\right), \quad \tilde{\Psi}\left(v_{0}, \mu\right) \equiv \Phi_{\mu}\left(v_{0}\right)+\Psi\left(v_{0}+\Phi_{\mu}\left(v_{0}\right), \mu\right) \in \mathcal{Z}
$$

The nonlinear function $\tilde{\Psi}$ is solution of the next equations:

$$
(N F):\left\{\begin{array}{l}
\left.D_{v_{0}} \tilde{\Psi}\left(v_{0}, \mu\right) \mathbf{A}\right|_{\mathcal{X}_{c}} v_{0}-\mathbf{A} \tilde{\Psi}\left(v_{0}, \mu\right)+\mathbf{N}_{\mu}\left(v_{0}\right)=\mathbf{Q}\left(v_{0}\right) \\
\mathbf{Q}\left(v_{0}\right) \equiv \Pi_{p}\left[\mathbf{R}\left(v_{0}+\tilde{\Psi}\left(v_{0}, \mu\right), \mu\right)-D_{v_{0}} \tilde{\Psi}\left(v_{0}, \mu\right) \mathbf{N}_{\mu}\left(v_{0}\right)\right]
\end{array}\right.
$$

where Π_{p} is the operator which takes the first $p+1$ terms in the Taylor expansion in
the variable v_{0}.
2. Under these assumptions, we have that $\Sigma_{0}=\{ \pm i \omega\}$ and that the associated center subspace E_{0} is two-dimensional spanned by the eigenvectors $\zeta, \bar{\zeta}$ associated with i ω and -i ω, respectively. We set $\tilde{\Psi} \equiv \sum_{p, q, r} \Psi_{p, q, r} A^{p} \bar{A}^{q} \mu^{r}$. By identifying in (NF) the terms of order $O(\mu), O\left(A^{2}\right)$, and $O(A \bar{A})$, we obtain

$$
\begin{gathered}
-\mathbf{L} \Psi_{2,0,0}=\mathbf{R}_{0,1} \\
(2 i \omega-\mathbf{L}) \Psi_{2,0,0}=\mathbf{R}_{2,0}(\zeta, \zeta) \\
-\mathbf{L} \Psi_{1,1,0}=2 \mathbf{R}_{2,0}(\zeta,-\zeta)
\end{gathered}
$$

Here the operators \mathbf{L} and $2 i \omega-\mathbf{L}$ are invertible so that the equation above are uniquely determined. Next we identify terms of order $O(\mu A)$ and $O\left(A^{2} \bar{A}\right)$ and find

$$
\begin{gathered}
(i \omega-\mathbf{L}) \Psi_{1,0,1}=-a \zeta+\mathbf{R}_{1,1}(\zeta)+2 \mathbf{R}_{2,0}\left(\zeta, \Psi_{0,0,1}\right) \\
(i \omega-\mathbf{L}) \Psi_{2,1,0}=-b \zeta+\mathbf{R}_{2,0}\left(\zeta, \Psi_{1,1,0}\right)+2 \mathbf{R}_{2,0}\left(\bar{\zeta}, \Psi_{2,0,0}\right)+3 \mathbf{R}_{3,0}(\zeta, \zeta, \bar{\zeta})
\end{gathered}
$$

Since $i \omega$ is a simple isolated eigenvalue of \mathbf{L}, the range of $(i \omega-\mathbf{L})$ is of codimension 1, so that we can solve these equations, and determine $\Psi_{1,0,1}$ and $\Psi 2,0,0$, provided the right hand sides satisfy one solvability condition. It is this solvability condition which allows to compute the coefficients a and b. In the case when \mathbf{L} has an adjoint \mathbf{L}^{*}, acting in the dual space X^{*}, then the solvability condition is that the right hand sides are orthogonal to the kernel of the adjoint ($-i \omega-\mathbf{L}^{*}$) of $(i \omega-\mathbf{L})$. The kernel of $\left(-i \omega-\mathbf{L}^{*}\right)$ is one-dimensional, just as the kernel of $(i \omega-\mathbf{L})$, spanned by $\zeta^{*} \in \mathcal{X}^{*}$ that we choose such that $\left\langle\zeta, \zeta^{*}\right\rangle=1$. Here $\langle\cdot, \cdot\rangle$ denotes the duality product between X and X^{*}. For example $a=\left\langle\mathbf{R}_{1,1}(\zeta)+2 \mathbf{R}_{2,0}\left(\zeta, \Psi_{0,0,1}\right), \zeta^{*}\right\rangle$.
3. By symmetry arguments, the bifurcation is of "pitchfork" type and the central part is given by $E_{0}=\operatorname{Vect}(\cos (2 \cdot), \sin (2 \cdot))=\operatorname{ker} \mathbf{L}_{\mu_{0}}$ where $\mathbf{L}_{\mu}=-I d+\mu S^{\prime}\left(\mu \nu_{0}^{f}(\mu)\right) J$. We use complex coordinates $U_{0}=A \zeta+c . c$ with $\zeta=e^{2 i \theta}$ and $A \in \mathcal{C}$, the normal form is given by:

$$
\dot{A}=A\left(\frac{\sigma-\sigma_{0}}{\sigma_{0}}+\chi_{3}|A|^{2}\right)+\text { h.o.t. }
$$

We write $V(\theta, t)=v_{0}^{f}+\mathbf{U}_{0}+\Psi\left(\mathbf{U}_{0}, \mu\right)$. The Taylor expansion reads
$\Psi\left(\mathbf{U}_{0}, \mu\right)=\Psi_{20} A^{2}+\bar{\Psi}_{20} \bar{A}^{2}+\Psi_{11} A \bar{A}+\Psi_{30} A^{3}+\bar{\Psi}_{30} \bar{A}^{3}+\Psi_{21} A^{2} \bar{A}+\bar{\Psi}_{21} A \bar{A}^{2}$

We write $\mathbf{R}(\mathbf{U}, \mu)=-v_{0}^{f}-\mathbf{U}+\mathbf{J} \star S\left(\mu \mathbf{U}+\mu v_{0}^{f}\right)-\mathbf{L}_{\mu_{0}}$. We note that $\left.D_{v_{0}} \tilde{\Psi}\left(v_{0}, \mu\right) \mathbf{A}\right|_{\mathcal{X}_{c}} v_{0}=0$. We look at the coefficient $A|A|^{2}$ in (NF), it satisfies

$$
b \zeta-\mathbf{L}_{\mu_{0}} \Psi_{21}=2 \mathbf{R}_{20}\left(\zeta, \Psi_{11}\right)+2 \mathbf{R}_{20}\left(\bar{\zeta}, \Psi_{20}\right)+3 \mathbf{R}_{30}(\bar{\zeta}, \zeta, \zeta)
$$

The coefficient A^{2} gives

$$
-\mathbf{L}_{\mu_{0}} \Psi_{20}=\mathbf{R}_{20}(\zeta, \zeta)
$$

The coefficient $A \bar{A}$ gives

$$
-\mathbf{L}_{\mu_{0}} \Psi_{11}=\mathbf{R}_{20}(\zeta, \bar{\zeta})
$$

The coefficient A^{3} gives

$$
-\mathbf{L}_{\mu_{0}} \Psi_{30}=\mathbf{R}_{20}\left(\zeta, \Psi_{20}\right)+\mathbf{R}_{3}(\bar{\zeta}, \zeta, \zeta)
$$

It remains to solve the above convolution equations. We write $e_{n}(\theta)=e^{2 i n \theta}$ and $J \star e_{n}=J_{n} e_{n}$. We find $\mathbf{R}_{2}(\zeta, \zeta)=\frac{1}{2} \mu_{0}^{2} S^{(2)}\left(\mu_{0} v_{0}^{f}\right) J \star \zeta^{2}$ hence
$\Psi_{20}=\alpha_{20} \zeta+\beta_{20} \bar{\zeta}+\frac{\mu_{0}^{2} S^{(2)}\left(\mu_{0} \delta_{0}^{v}\right) J_{2}}{2\left(-1+\mu_{0} S^{(1)}\left(\mu_{0} \delta_{0}\right) J_{2}\right.}=\alpha_{20} \zeta+\beta_{20} \bar{\zeta}+\frac{\mu_{0}^{2} S^{2(2)}\left(\mu_{0} \delta_{0}\right) J_{2}}{2\left(1-J_{2} J_{1}\right)}$. The final result is

$$
b=\mu_{0}^{3} J_{1}\left[\frac{S^{(3)}\left(\mu_{0} v_{0}^{f}\right)}{3}+\mu_{0} S^{(2)}\left(\mu_{0} v_{0}^{f}\right)\left(\frac{J_{0}}{1-J_{0} / J_{1}}+\frac{J_{2}}{2\left(1-J_{2} / J_{1}\right)}\right)\right]
$$

