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1. Picard theorem(s)

We start with a very standard result that is the basis for most results in these notes.
This first section is based on [Viterbo, 2003].

1.1. Basic results
Definition 1.1

A function T : X — X where (X,d) is a metric space is contracting iff Y,y €
X d(Tz,Ty) < k-d(x,y) where k < 1.

Theorem 1.1 (Picard)
Let X be a complete metric space and T': X — X a contracting mapping. Then T

has a unique fixed point i.e. the unique solution of the equation T(y) —y = 0.

Proof. Take xq € X and show that (T"x), is a Cauchy sequence hence convergent
(in a complete space), its limit will be the solution of the fixed point equation. If n > m

d(Tnl'(), Tml‘o) S d(Tm(Tn_ml'O), Tml'()) S k)md(Tn_m[L'(), ZL‘Q).

We have from the triangle inequality:

n—m—1 n—m—1
AT ™z, o) < AT o, T'xo) < Y K'd(Tao, xo)
i=0 i=0
L M {(Tw0,0) < ——d(Two, 20)
~ 11—k To, Lo) > 1k Lo, To
This gives:
d(Tm[E(), TnZL'()) S ﬁd(TfE(h 170)

which shows that (7"x), is a Cauchy sequence.

We provide without proof a version with parameters. To have a notion of
differentiability, we need to assume that we work in a Banach space. Hence, if p = 0,
X is a metric space and a closed subspace of a Banach space if p > 0. Also, if p = 0,
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A is a metric space and an open subspace of a Banach space if p > 0. We consider a
mapping 7' € C?(X x A, X) such that x — T'(z, ) is Lipschitz with constant k(\) where
A — k(A) is continuous. We say that we have a C? map of contracting functions if
moreover k() < 1.

Theorem 1.2 (Picard with parameters)

A CP map of contracting functions on a space X has a family of fixed points z(\)
where the map A — x()) is CP.

1.2. Applications, see [Chow and Hale, 1982, Franoise, 2005]

We work here in Banach spaces, 7.e. complete normed vector space. Recall that a linear

map L € L(E, F) between Banach spaces is continuous iff ||L||,p -y = sup |[|Lz] <
7 llell <1
0.

Theorem 1.3 (Implicit functions theorem)

Let us consider two open sets U,V in Banach spaces E1, Fy and f : U xV — F
a C* application with k > 1. We assume f(zo, o) = 0 and g—i(:co,yo) € L(Ey, F)
has a continuous inverse. Then there are neighborhoods U’ of xqy, V' of 3y and a
mapping ¢ € C*(U’, V') such that

V(z,y) e U' x V', f(z,y) =0 & y=¢(x).

Proof. Fori x € B(xg,r) and y € B(yo,7’), the mapping

9 -1
is continuous from B(yg,7’) to itself if r,r" are small enough. Indeed:

of Lof
dT,(y) = Id — | = (xo, — f(x,
= 11- (L) Lriew
is close to zero hence we can chose r,r" small enough so that for all x in B(xg,r)

and y in B(yo,r"), we have |dT.(y)| < % Then it gives |T.(yo) — wol =

) —_
[ <g—£(x0, yg)> f(z,y)|| <7'/2if r,r" are small enough. It follows that T, <B(y0,7")> C

B(T,(yo),7'/2) C B(yo,r") (strict inclusion). Hence, T, : B(yo,7") — B(yo,7’) is
contracting and we conclude with the Picard theorem with parameters.

We also have a result to invert a nonlinear map.

1 We use the definition B(zg,r) = {x € X | d(z,z0) <7}
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Theorem 1.4 (Inverse function theorem)

Let ¢ € C*(U,V) and d¢(zy) has a bounded inverse. There are open sets U’ V'
containing x¢ and yo = ¢(x) and a map 1 € C*(V',U") such that ¢ o1 = Id.

Proof. We apply the previous theorem to f(u,v) = v — ¢(v).

1.83. Cauchy-Lipschitz theorems

We consider F': I x 2 — E where {2 is an open set of a Banach space F and [ is an
open interval of R. We want to solve

i = F(t,2) 1)
with the initial condition x(tg) = x¢ € Q,ty € 1.
Theorem 1.5 (Cauchy-Lipschitz)

We assume that F' is continuous and Lipschitz in the second variable. Then for all
T € I and ug € () there exist d,« > 0 such that the system

{ i = F(t,z),

z(ty) = x9 € Q

has a unique solution defined on |ty—«, to+a| for all kg € B(ug) and ty €]7—39, 7+4].

Proof. Left in exercise, you may use the Picard theorem.

The theorem looks complicated in this form because we want that for to in a
neighborhood of 7 and z in a neighborhood of ug, the size 2« of the domain of definition
is uniformly minored. We also give a version with parameters. Note that the initial
condition can be taken as a parameter.

Theorem 1.6 (Cauchy-Lipschitz with parameters)

We assume that F(\,t,x) is in C¥(A x I x Q, E) with k > 0, Lipschitz in the
variable x and A satisfies the hypothesis of theorem 1.2. Let x)(t;ty,zo) be the

solution of

T =F(\t x),

z(ty) = x9 € Q
Then for all (Ao, T,up) € A x I x €, there exist §,« > 0 such that x, is defined on
Jto — a, to + af for all (X, to, z0) € B(Xo, d)X|7 — &, 7 + d[x B(ug,d). Moreover, the
map (ta )\7 t07 'CEO) - .T)\(t, tU? .To) Is Ck

Up to the domain of definition, this theorem amounts to saying that (¢, \,tg,z9) —
xA(t;to, g) is COF.
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