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Part 1 - Lectures questions

1. What can you say about the columnar organization of the visual area V1?

2. What can you say about synaptic plasticity?

3. Can you give examples in the neurosciences field where the use of delay differential
equations can be interesting?

Consider the equation d
dtx = µ · x− x3 +R(x) ∈ R with R(x) = o(x3) and µ ∈ R.

4. Study the truncated system (for R = 0) as function of µ ∈ R when x is close to zero.
In particular, gives the equilibria, their stability and the flow.

5. When R 6= 0, do the results of the previous question persist?

6. Give the name of this bifurcation.

Part 2 - Spiking times

Constant spike Rates

We assume in this part that an individual neuron spikes at constant rate r. We denote by
τ1 ≤ τ2 ≤ · · · ≤ τ` ≤ · · · the sequence of spiking times. The number of spikes between times
0 and t is denoted Kt :=

∑
`≥1 1{τ`≤t}.

7. Give the law of the first spiking time τ1.

8. Give the Laplace transform of τ1 defined by Ψ(z) = E[exp(−zτ1)].

9. Is the stochastic process (Kt)t≥0 a Markov process? Give its infinitesimal generator
L.

Non constant Rates

In this question, we no more assume that the spike rate is constant but it is a deterministic
function r(t) of time t. We still denote by (τ`)`≥1 the sequence of spiking times and by Kt

the counter of spikes.

10. Give an efficient algorithm to simulate τ1.

11. Recall without proof the tail distribution g of τ1, g(θ) := P[τ1 > θ].

12. Give the infinitesimal generator Lt of the process (Kt)t≥0
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Random Rates depending on the membrane potential

We now assume that the spike rates in no more a deterministic external function but depends
on the value of the membrane potential Vt of the neuron. We assume that between the
spikes, the membrane potential evolves according to the differential equation

(1)
dVt
dt

= b(Vt).

The neuron spikes at rate λ(Vt), that is

lim
η→0

1

η
P(neuron spikes ∈ [t, t+ η] |Vt) = λ(Vt).

When a spike occurs, the membrane potential is reset to V r. We still denote by (τ`)`≥1 the
sequence of spiking times and by Kt the counter of spikes.

13. Assume that for any sequence of times s1, · · · , sk, we are able to find directly the value
of the solution of (1), say Ṽs1 , · · · , Ṽsk . Give an efficient algorithm of simulation of
the sequence (τ`)`≥1 .

14. Give the infinitesimal generator of (Vt,Kt).

15. Is the counting process (Kt)t≥0 a Markov process? Is the membrane potential Vt a
Markov process? For both processes, if it is Markov, give the infinitesimal generator.

16. Example 1: We now assume that V r = 0, b(v) = v, λ(v) ≡ 1 and V0 is uniformly dis-
tributed on [V r, V r +1]. Give the distribution of Vt. Give the asymptotic distribution
of (Vt) as t goes to infinity.

17. Example 2: Same questions if λ(v) = v, the other parameters and functions being
similar as in Example 1. In addition, compute the spike rate rt of the neuron.

Random Rates depending on the membrane potential and the time
spent since the last spike

In this part, we assume that the spiking rate also depends on t − τα(t), where α(t) =
sup{τk such that τk < t}. We denote the spiking rate λ(Vt, t− τα(t)).

18. Give a Markov process associated to this setting. Give its infinitesimal generator.

Part 3 - Feed-forward networks

This part concerns the study of feed-forward chains that are used to model synchronization
in spike rate based neural networks. We are interested in understanding how the dynamical
singularities of isolated populations are modified when the populations are coupled.

We consider the system in Rm × Rm given by

(2)
ẋ = f(x, 0)
ẏ = f(y, x)

where f(0, 0) = 0. We further assume that the linearisation at the origin of the vector field

is J =

[
a 0
b a

]
.
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19. Show that the flow can be written Φt(x(0), y(0)) = (φt(x(0), 0), φt(y(0), x(0))) .

We recall the notation of the center part Σc(a) = {< = 0} ∩ Σ(a) of the spectrum of a,
defined in J , and its associated generalized eigenspace Ec(a) = ⊕λ∈Σc(a)⊕p≥1 ker(λI − a)p.

20. We assume that the center subspace Ec(a) of a is of dimension n ≤ m. Show that the
first equation of (2) has a locally invariant manifold Vc.

21. Show that (2) has a locally invariant manifold Wc.

22. Let us define the projection Π(x, y) = (x, 0). Show that Π−1(Vc × {0}) is flow invari-
ant.

23. Show that one can choose a 2n-dimensional center manifold Wc ⊂ Rm × Rm for (2)
so that Π(Wc) = Vc × {0}. (One can reduce Vc.)

We admit that there is an invertible mapping P : Vc×Vc →Wc such that P : (z2, z3) =
(z2, ρ(z2, z3)), P (z2, 0) = (z2, 0) and P (0, z3) = (0, z3).

24. Compute the flow of (2) on Vc × Vc as function of φt and the inverse of P .

25. Deduce that the dynamics on the center manifold Wc of (2) can be written on Vc×Vc
as

(3)
ż2 = g(z2, 0)
ż3 = g(z3, z2)

for some function g and coordinates z2, z3 ∈ Vc. (One could use question 19)

Study of the normal form.

26. Assume that the center subspace Ec is two-dimensional, and the linearization of the
internal dynamics a has a pair of purely imaginary eigenvalues. We rescale time so
these are equal to ±i. Does the normal form has the same structure as (4)?

27. Show that any change of variable (z2, z3)→ (Q(z2), Q(z3)) which leaves (0, 0) invariant
does change the structure of (3). Deduce that we can assume g(z2, 0) being in normal
form. What is the expression of this normal form?

28. We assume that for any value of k, there exists a polynomial change of coordinates
which can transform (3) into the system in C× C

(4)
ż2 = pk(z2, z2) + h.o.t.
ż3 = pk(z3, z3) + qk(z3, z3, z2, z2) + h.o.t.

where pk and qk are polynomials of order k, qk(z3, z3, 0, 0) = 0, h.o.t. indicates terms
of degree at least k + 1 and the truncated system is equivariant under the action of
S1, θ · (z2, z3) = (eiθz2, e

iθz3). What is the general expression for pk, qk?
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