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1. Picard theorems

We start with a very standard result that is the basis for most results in these notes.

This first section is based on [Viterbo, 2003].

1.1. Basic results

Definition 1.1

A function T : X → X where (X, d) is a metric space is contracting iff ∀x, y ∈
X d(Tx, Ty) ≤ k · d(x, y) where k < 1.

Theorem 1.1 (Picard)

Let X be a complete metric space and T : X → X a contracting mapping. Then T

has a unique fixed point i.e. the unique solution of the equation T (y)− y = 0.

Proof. Take x0 ∈ X and show that (T nx0)n is a Cauchy sequence hence convergent

(in a complete space), its limit will be the solution of the fixed point equation. If n ≥ m

d(T nx0, T
mx0) ≤ d(Tm(T n−mx0), Tmx0) ≤ kmd(T n−mx0, x0).

We have from the triangle inequality:

d(T n−mx0, x0) ≤
n−m−1∑
i=0

d(T i+1x0, T
ix0) ≤

n−m−1∑
i=0

kid(Tx0, x0)

≤ 1− kn−m

1− k
d(Tx0, x0) ≤ 1

1− k
d(Tx0, x0).

This gives:

d(Tmx0, T
nx0) ≤ km

1− k
d(Tx0, x0)

which shows that (T nx0)n is a Cauchy sequence.
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We provide without proof a version with parameters. To have a notion of

differentiability, we need to assume that we work in a Banach space. Hence, if p = 0,

X is a metric space and a closed subspace of a Banach space if p > 0. Also, if p = 0,

Λ is a metric space and an open subspace of a Banach space if p > 0. We consider a

mapping T ∈ Cp(X×Λ, X) such that x→ T (x, λ) is Lipschitz with constant k(λ) where

λ→ k(λ) is continuous. We say that we have a Cp map of contracting functions if

moreover k(λ) < 1.

Theorem 1.2 (Picard with parameters)

A Cp map of contracting functions on a space X has a family of fixed points x(λ)

where the map λ→ x(λ) is Cp.

1.2. Applications, see [Chow and Hale, 1982]

We work here in Banach spaces, i.e. complete normed vector space. Recall that a linear

map L ∈ L(E,F ) between Banach spaces is continuous iff ‖L‖L(E,F ) ≡ sup
‖x‖E≤1

‖Lx‖F <
∞.

Theorem 1.3 (Implicit functions theorem)

Let us consider two open sets U, V in Banach spaces E1, E2 and f : U × V → F

a Ck application with k ≥ 1. We assume f(x0, y0) = 0 and ∂f
∂y

(x0, y0) ∈ L(E2, F )

has a continuous inverse. Then there are neighbourhoods U ′ of x0, V ′ of y0 and

a mapping φ ∈ Ck(U ′, V ′) such that

∀(x, y) ∈ U ′ × V ′, f(x, y) = 0⇔ y = φ(x).

Proof. For‡ x ∈ B(x0, r) and y ∈ B(y0, r
′), the mapping

Tx(y) = y −
(
∂f

∂y
(x0, y0)

)−1

f(x, y)

is continuous from B(y0, r′) to itself if r, r′ are small enough. Indeed:

dTx(y) = Id−
(
∂f

∂y
(x0, y0)

)−1
∂f

∂y
f(x, y)

is close to zero hence we can chose r, r′ small enough so that for all x in B(x0, r)

and y in B(y0, r
′), we have ‖dTx(y)‖ ≤ 1

2
. Then it gives ‖Tx(y0) − y0‖ =

‖
(
∂f
∂y

(x0, y0)
)−1

f(x, y)‖ ≤ r′/2 if r, r′ are small enough. It follows that Tx

(
B(y0, r′)

)
⊂

B(Tx(y0), r′/2) ⊂ B(y0, r′) (strict inclusion). Hence, Tx : B(y0, r′) → B(y0, r′) is

contracting and we conclude with the Picard theorem with parameters.

We also have a result to invert a nonlinear map.

‡ We use the definition B(x0, r) = {x ∈ X | d(x, x0) < r}
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Theorem 1.4 (Inverse function theorem)

Let φ ∈ Ck(U, V ) and dφ(x0) has a bounded inverse. There are open sets U ′, V ′

containing x0 and y0 = φ(x0) and a map ψ ∈ Ck(V ′, U ′) such that φ ◦ ψ = Id.

Proof. We apply the previous theorem to f(u, v) = v − φ(v).

1.3. Cauchy-Lipschitz theorems

We consider F : I × Ω → E where Ω is an open set of a Banach space E and I is an

open interval of R. We want to solve

ẋ = F (t, x) (1)

with the initial condition x(t0) = x0 ∈ Ω, t0 ∈ I.

Theorem 1.5 (Cauchy-Lipschitz )

We assume that F is continuous and Lipschitz in the second variable. Then for all

τ ∈ I and u0 ∈ Ω there exist δ, α > 0 such that the system{
ẋ = F (t, x),

x(t0) = x0 ∈ Ω

has a unique solution defined on ]t0−α, t0+α[ for all x0 ∈ B(u0) and t0 ∈]τ−δ, τ+δ[.

Proof. Left in exercise, you may use the Picard theorem.

The theorem looks complicated in this form because we want that for t0 in a

neighbourhood of τ and x0 in a neighborhood of u0, the size 2α of the domain of

definition is uniformly minored. We also give a version with parameters. Note that the

initial condition can be taken as a parameter.

Theorem 1.6 (Cauchy-Lipschitz with parameters)

We assume that F (λ, t, x) is in Ck(Λ × I × Ω, E) with k ≥ 0, Lipschitz in the

variable x and Λ satisfies the hypothesis of theorem 1.2. Let xλ(t; t0, x0) be the

solution of {
ẋ = F (λ, t, x),

x(t0) = x0 ∈ Ω

Then for all (λ0, τ, u0) ∈ Λ× I × Ω, there exist δ, α > 0 such that xλ is defined on

]t0 − α, t0 + α[ for all (λ0, t0, x0) ∈ B(λ0, δ)×]τ − δ, τ + δ[×B(u0, δ). Moreover, the

map (t, λ, t0, x0)→ xλ(t; t0, x0) is Ck.

Up to the domain of definition, this theorem amounts to saying that (t, λ, t0, x0) →
xλ(t; t0, x0) is Ck.
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2. Stability

We consider an autonomous dynamical system

xn+1 = F (xn) (2)

or {
ẋ = F (x),

x(t0) = x0 ∈ Ω

and write φ the flow i.e. x(t) = φt(x0) in the continuous case and xn = φn(x0) in the

discrete case.

Definition 2.1

An equilibrium is a point x ∈ E such that φt(x) = x in the continuous or discrete

case.

In this section, we study the stability of an equilibrium.

Lemma 2.1 ([Iooss, 1979])

Let us consider A ∈ L(E) where E is a Banach space and there exists b ≥ 0 such

that all elements in the spectrum Σ of A satisfy sup
λ∈Σ
|λ| = b. Then for all ε > 0, we

can choose a norm in E, equivalent to the given one, such that ‖A‖L(E) < (b+ ε).

Proof. Consider the new norm ‖x‖new for x ∈ Rn given by ‖x‖new =

sup
n≥0

‖Anx‖
(b+ε)n

. It is a norm that satisfies ‖Ax‖new ≤ (b + ε)‖x‖new and which is

equivalent to the given one. Indeed, we first have ‖x‖ ≤ ‖x‖new (for n = 0).

Then we find ‖x‖new ≤ sup
n≥0

‖An‖L(E)

(b+ε)n
‖x‖. The Gelfand spectral radius theorem

[Dunford and Schwartz, 1988][VII.3.4] gives lim
n

n
√
‖An‖L(E)

= b, there is a constant

K such that ‖x‖new ≤ K ‖x‖ and the norms are equivalent.

We can prove the previous lemma in finite dimensions using the Jordan

decomposition (see exercises).

2.1. Case of equilibria

Definition 2.2

An equilibrium xeq is stable if given any ε > 0, there exists a δ > 0 such that for

all ‖x0 − xeq‖ < δ, the solution of the initial value problem x(t, 0, x0) exists for all

t ≥ 0 and ‖x(t, 0, x0)− xeq‖ < ε, t ≥ 0.

Definition 2.3

An equilibrium xeq is asymptotically stable if it is stable and there exists b > 0

such that if ‖x0−xeq‖ < b, then limt→∞ ‖x(t, 0, x0)−xeq‖ = 0. It is exponentially

stable iff ∃V ∈ V(xeq), γ > 0, k ∈ (0, 1), ∀x ∈ V , ‖F n(x)− xeq‖ ≤ γkn.
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We let the reader adapt these definitions to the case of discrete dynamical systems.

Theorem 2.1 (Stability of equilibria for discrete DS, [Iooss, 1979])

Let E be a Banach space and F : E → E be differentiable at an equilibrium xeq

and dF (xeq) ≡ A ∈ L(E) is continuous. If the spectrum of A lies in a compact

subset of the open unit disc, then xeq is exponentially stable.

Proof. Using Lemma 2.1, we chose a norm, equivalent to the given one such that

‖A‖L(E) = b < 1. We assume that xeq = 0 for simplicity. Then, from the differentiability:

∀ε > 0,∃δ > 0 such that ‖x‖ ≤ δ gives F (x) = Ax+ R(x) with ‖R(x)‖ ≤ ε ‖x‖. Hence

‖F (x)‖ ≤ (b + ε)‖x‖. We chose ε such that b + ε < 1. Now ‖F n(x)‖ ≤ (b + ε)nx → 0

and xeq is exponentially stable.

We could also have proved the theorem using the fact that x → dF (x) is continuous

and the Picard theorem. We now consider an autonomous dynamical system ẋ = F (x).

Theorem 2.2

Let O ⊂ E be an open set of a Banach space, and F : O → E be C1. Suppose that

xeq ∈ O is an equilibrium of F and that the spectrum Σ of A ≡ dF (xeq) ∈ L(E) is

such that sup
λ∈Σ
<λ = b < 0. Then xeq is asymptotically stable.

Proof. We assume that xeq = 0. From theorem 1.6, x → φt(x) is C1. It is easy

to see that the differential dφt(x0) is equal to the solution in L(E) of L̇ = A(t)L with

L(0) = Id and A(t) = dF (φt(x0)). We are interested in the case x0 = xeq for which

A(t) = dF (xeq) = A. Hence, dφt(xeq) = eAt. The time-T step φT along orbits define a

discrete (differentiable) dynamical system xn+1 = φT (xn) with jacobian eAT ∈ L(E) at

xeq. The spectral mapping theorem§ [Dunford and Schwartz, 1988][Th.VII.3.11] states

that the spectrum Σ(eTA) of eTA is given by {eTλ, λ ∈ Σ(A)} which shows that we can

apply Theorem 2.1. We let the reader complete the proof.

2.2. Case of periodic orbits

To be done.

3. Tools for bifurcation theory

We recall that a linear mapping A : Z → X where Z,X are normed vectors spaces, is

continuous iff ‖A‖L(Z,X) ≡ sup
‖x‖Z≤1

‖Ax‖X <∞. We write L(Z,X) the set of continuous

linear mappings between Z and X. We assume that Z ⊂ X and we define the resolvent

set

ρ(A) =
{
λ ∈ C | (λId− A) invertible and (λId− A)−1 ∈ L(X,X)

}
§ It is obvious in finite dimensions
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and the spectrum

Σ(A)
def
= C \ ρ(A).

The point spectrum or the eigenvalues is the set Σp(A) ⊂ Σ(A) defined by λ ∈ Σ(A)

such that ker(λId − A) 6= {0}. In infinite dimensions, there are operators A for which

Σp(A) ( Σ(A).

We have not the space here to define the notion of closed operator, for which

the spectral theory is well defined and studied. Indeed, one can show that if

ρ(A) 6= ∅, then A is necessarily closed. The interested reader can look at [Kato, 1966,

Dunford and Schwartz, 1988]. We would like to mention that the hypothesis (iii) (see

below) implies that A is closed in X.

Example : Let us consider Au
def
= d2

dx2
u + u from Z =

{
u ∈ C2([0, π]) | u(0) = u(π) = 0

}
to X = C0([0, π]). We investigate the spectrum of A. For this we have to solve the

linear equation λu − Au = f for λ ∈ C, f ∈ X and u ∈ Z; that is, we have to find

solutions u ∈ C2([0, π]) of the linear problem λu − u − u′′ = f with u(0) = u(π) = 0.

The second order ODE has a unique solution u ∈ C2([0, π]) satisfying the boundary

conditions‖ for f ∈ C0([0, π]), precisely when the associated homogeneous equation

λu − u − u′′ = 0 has no nontrivial solutions in X. A direct calculation shows that

there are nontrivial solutions for λ = 1 − n2 , with n any positive integer. This shows

that Σ(A) =
{
λ ∈ C | λ = 1− n2, n ∈ N∗

}
.

3.1. Center manifold

When the Jacobian at an equilibrium xeq has an eigenvalue satisfying <λ = 0, hence

breaking the stability condition of theorem 2.2, the vector field F (x) around xeq is

particular. Indeed, there is a flow invariant manifold - also called invariant manifold -

that contains all local bounded trajectories and the dimension of such manifold is equal

to the sum of the algebraic multiplicities of the eigenvalues with zero real part. Hence,

we can restrict the study of the dynamical system to this invariant manifold, which in

the case of an infinite dimensional system, is very useful. More precisely, let us assume

that xeq = 0 and consider 3 Banach spaces X, Y, Z such that

Z ⊂ Y ⊂ X

with continuous embeddings, meaning the linear map i : Y → X (resp. i : Z → Y ) with

i(x) = x is continuous or equivalently ‖x‖X ≤ ‖x‖Y (resp. ‖x‖Y ≤ ‖x‖Z). We write

this as:

Z ↪→ Y ↪→ X.

We consider a differential equation of the form

dx

dt
= F (x, µ)

def
= Ax+R(x, µ) (3)

where µ ∈ Rm is a parameter. We assume the following, basically the jacobian of F is

continuous at (0, 0) and the reminder is called R.

‖ You can compute the solution analytically!
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Hypothesis 3.1

(i) A ∈ L(Z,X)

(ii) for some k ≥ 2, there exists a neighbourhood Vx ⊂ Z of 0 and Vµ of 0 in Rm

such that R ∈ Ck(Vx × Vµ, Y ) and R(0, 0) = 0, dxR(0, 0) = 0.

The reason why we chose such a general setting is to allow the study of more general

differential equations. Indeed, it may occur, especially in infinite dimensions, that the

domain of definition of the linear part differs from the one of the nonlinear part¶.

Hypothesis 3.2

(iii) the spectrum of A is such that Σ(A) = Σ− ∪ Σ+ ∪ Σ0 where Σ− = {λ ∈
Σ(A) | <λ < 0}, Σ− = {λ ∈ Σ(A) | <λ > 0} and Σ0 = {λ ∈ Σ(A) | <λ = 0}.
Moreover the set Σ0 consists of a finite number of eigenvalues with finite

algebraic multiplicities. Finally, we require a spectral gap i.e. that there is

γ > 0 verifying inf
λ∈Σ+

(<λ) > γ and sup
λ∈Σ−

(<λ) < −γ.

Note that this implies that Σ 6= ∅. Under these hypotheses, there is a unique

spectral projector[?] P0 ∈ L(X,Z) ∩ L(X,X) which commutes with A on Z. Defining

Ph
def
= Id − P0, we write the ranges E0

def
= P0X = ker(Ph) = ⊕λ∈Σ0Eλ(A) where

Eλ(A) = ⊕k≥0 ker(λId−A)k and Xh
def
= PhX. This allows to decompose X into invariant

subspaces:

X = E0 ⊕Xh, A ∈ L(E0), A ∈ L(PhZ,Xh).

It follows that Σ(A|E0) = Σ0 and Σ(A|PhZ) = Σ+ ∪ Σ−. Note that E0 is called the

central part and Xh the hyperbolic part.

We need another hypothesis before we can state the theorem of the center manifold.

More precisely

Hypothesis 3.3

(iv) For any η ∈ [0, γ] and any f ∈ Cη(R, PhY ) ≡ {f ∈
C0(R, PhY ) | ‖f‖Cη(R,PhY ) ≡ sup

t∈R
e−η|t| ‖f(t)‖Y <∞}, the linear problem

duh
dt

= A|Xhuh + f(t) (4)

has a unique solution uh = Khf ∈ Cη(R, PhZ). Furthermore, the linear map

Kh belongs to L(Cη(R, PhY ), Cη(R, PhZ)), and there exists a continuous map

C : [0, γ]→ R such that ‖Kh‖L(Cη(R,PhY ),Cη(R,PhZ)) ≤ C(η).

To check the hypothesis 3.3 is quite difficult in general. Hence, we use the following

proposition.

¶ As in dx
dt = ∆x+ x2 for example
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Proposition 3.1

(i) In finite dimension, i.e. whenX = Rn, hypothesis 3.3 is automatically satisfied.

(ii) In the infinite dimensions when Y 6= X, hypothesis 3.3 is satisfied if there exist

positive constants ω0 > 0, c > 0 and α ∈ [0, 1) such that for all ω ∈ R, with

|ω| ≥ ω0,we have that iω belongs to the resolvent set C \ Σ(A) of A, and

‖(iω − A)−1‖L(X) ≤ c/|ω|

‖(iω − A)−1‖L(Y,Z) ≤ c/|ω|1−α

(iii) If X, Y, Z are Hilbert spaces and Y 6= X, hypothesis 3.3 is satisfied if only the

first inequality is valid in (ii).

Proof. We only prove (i). In order to solve (4), the initial condition uh(0) is uniquely

determined by the exponential growth required for the solution, uh ∈ Cη(R, PhZ), which

is given by

uh(t) = −
∫ ∞
t

eA(t−s)P+f(s) +

∫ t

−∞
eA(t−s)P−f(s)ds

where P± are the projectors associated to Σ±.

We are now in position to give the center manifold theorem.

Theorem 3.2 ([Haragus and Iooss, 2011])

There is a neighbourhood O = Ox × Oµ of (0, 0) in Z × Rm, a mapping Ψ ∈
Ck(E0 × Rm;T h) with

Ψ(0, 0) = 0, dxΨ(0, 0) = 0

and a manifold M(µ) = {xc + Ψ(xc, µ), xc ∈ E0} for µ ∈ Vµ such that:

• M(µ) is locally invariant, i.e., x(0) ∈ M(µ) ∩ Ox and x(t) ∈ Ox for all

t ∈ [0, T ] implies x(t) ∈M(µ) for all t ∈ [0, T ].

• M(µ) contains the set of bounded solutions of (3) staying in Ox for all

t ∈ R, i.e. if x is a solution of (1) satisfying for all t ∈ R, x(t) ∈ Ox, then

x(0) ∈M(µ).

• (Parabolic case) if Σ+ = ∅, then M(µ) is locally attracting, i.e. if x is a

solution of (1) with x(0) ∈ Ox and x(t) ∈ Ox for all t > 0, then there exist

v(0) ∈M(µ) ∩ Oc and γ̃ > 0 such that

x(t) = v(t) +O(e−γ̃t) as t→∞

where v is a solution of (3) with initial condition v(0).

We wish to make some remarks concerning the center manifold

• The Center manifold is not unique (cf. exercises)
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• If xc(0) ∈M(µ), then

ẋc = A|E0xc + P0R(xc + Ψ(xc, µ), µ) ≡ f(xc)

where P0 is the (unique) projector on E0 which commutes with A.

• The local coordinates function satisfies

dΨ(xc, µ) · f(xc) = PhA ·Ψ(xc, µ) + PhR(xc + Ψ(xc, µ))

• There are extensions for non-autonomous systems, DS with symmetries...

• Taylor expansion of Ψ is uniquely determined.

• You don’t need to know what is a manifold (see differential geometry lectures for

a proper definition) to understand this theorem. Suffice it to see that we describe

the manifold M(µ) here, as a small deviation Ψ from an hyperplane.

3.2. Normal form

The idea is to find a polynomial change of variables which improves locally a nonlinear

system in finite dimensional space of the form

ẋ = Ax+R(x, µ) (5)

in order to analyse its dynamics more easily. This is usually used in conjunction to

the center manifold. More precisely, the flow is reduced to the finite dimensional center

(invariant) manifold in a first step and then simplified into the normal form in a second

step. Note that there is a way to combine both operations in a single step (see [?]). We

make the following hypothesis

Hypothesis 3.4

(i) A ∈ L(Rn),

(ii) R ∈ Ck(Vx × Vµ,Rm) and

R(0, 0) = 0, dxR(0, 0) = 0

Theorem 3.3

Assume the hypothesis hold. Then for any positive integer p ∈ [2, k], there exist

neighbourhoods V1 and V2 of 0 in Rn and Rm, respectively, such that for any µ ∈ V2,

there is a polynomial Φµ : Rn → Rn of degree p with the following properties:

• The coefficients of the monomials of degree q in Φµ are functions of µ of class

Ck−q, and

Φ0(0) = 0, dΦ0(0) = 0

• For any x ∈ V1, the polynomial change of variable x = y + Φµ(y) transforms

(5) into the normal form

ẏ = Ay +Nµ(y) + ρ(y, µ)
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and the following properties hold:

(i) For any µ ∈ V2, Nµ is a polynomial Rn → Rn of degree p, with coefficients

depending upon µ, such that the coefficients of the monomials of degree

q are of class Ck−q, and

N0(0) = 0, dxN0(0) = 0

(ii) the equality Nµ(etA
∗
y) = etA

∗
Nµ(y) holds for all (t, y) ∈ R × Rn and

µ ∈ V2

(iii) the maps ρ belongs to Ck(V1 × V2,Rn) and

∀µ ∈ V2, ρ(y, µ) = o(‖y‖p)

We note that Nµ is only polynomial in y. We can of course Taylor expand the

monomials in µ to find there expression. It can be useful to use a relation that is

equivalent+ to the above equality (ii):

dyNµ(y)A∗y = A∗Nµ(y), ∀y ∈ Rn, µ ∈ V2.

3.2.1. Case of discrete DS We now state a version of the previous theorem in the case

of discrete dynamical systems

xq+1 = Axq +R(xq, µ). (6)

As above, we assume that L ∈ L(Rn), R ∈ Ck(Vx × Vµ,Rm) and also that R(0, 0) =

0, dxR(0, 0) = 0. It implies that x = 0 is an equilibrium for (6).

+ It is easily proved by taking the differential in t at t = 0
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Theorem 3.4 (Normal form for discrete DS)

Assume the hypothesis hold. Then for any positive integer p ∈ [2, k], there exist

neighbourhoods V1 and V2 of 0 in Rn and Rm, respectively, such that for any µ ∈ V2,

there is a polynomial Φµ : Rn → Rn of degree p with the following properties:

• The coefficients of the monomials of degree q in Φµ are functions of µ of class

Ck−q, and

Φ0(0) = 0, dΦ0(0) = 0

• For any x ∈ V1, the polynomial change of variable x = y + Φµ(y) transforms

(6) into the normal form

yq+1 = Ayq +Nµ(yq) + ρ(yq, µ)

and the following properties hold:

(i) for any µ ∈ V2, Nµ is a polynomial Rn → Rn of degree p, with coefficients

depending upon µ, such that the coefficients of the monomials of degree

q are of class Ck−q, and

N0(0) = 0, dxN0(0) = 0

(ii) the equality Nµ(A∗y) = A∗Nµ(y) holds for all (t, y) ∈ R×Rn and µ ∈ V2

(iii) the maps ρ belongs to Ck(V1 × V2,Rn) and

∀µ ∈ V2, ρ(y, µ) = o(‖y‖p)
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4. Basic bifurcations

We assume that the model has been written on the center manifold in the following way

u̇ = f(u, µ).

A basic question concerns the stability of equilibria. A useful result in this direction

is Th. 2.2. This theorem breaks down when they are some eigenvalues λ such that <λ.

This can happen in two ways:

• 0 is an eigenvalue

• ±iω is an eigenvalue,

in which case an invariant manifold, the center manifold exists. For the first condition

to occur, a scalar system is enough. For the second case, a 2d system is necessary. The

saddle node bifurcation corresponds to the first case (see theorem below with parameter

µ = 0). Basically, it predicts the birth of additional equilibria.

The two following cases are standart:

Theorem 4.1 (Saddle-Node bifurcation)

Assume f is scalar Ck, k ≥ 2 in a neighborhood of (0, 0), and that it satisfies

f(0, 0) = 0,
∂

∂u
f(0, 0) = 0

and

∂

∂µ
f(0, 0) := a 6= 0,

∂2

∂2u
f(0, 0) := 2b 6= 0.

Then, a saddle-node bifurcation occurs at µ = 0. More precisely, the following

properties hold in a neighbourhood of 0 in R for sufficiently small µ:

• if ab < 0 (resp. ab > 0) the differential equation has 2 equilibria u±(ε), ε =
√
µ

for µ > 0 (resp., for µ < 0) , with opposite stabilities. Furthermore, the map

ε→ u±(ε) is of class Ck−2 in a neighbourhood of 0, and u±(ε) = O(ε).

• if ab < 0 (resp. ab > 0) the differential equation has no equilibria for µ < 0

(resp., for µ > 0).

The proof of the above theorem has been proposed in exercises. It amounts to first

study the vector field truncated at order 2. It gives a simple scalar system to analyse,

namely u̇ = aµ + bu2. Then, one has to show that the dynamics persists when one

consider the full system u̇ = f(u, µ).

For the second case, the system has an eigenvalue ±iω for a specific value of the

parameter µ (also called a bifurcation parameter). This gives a 2d system on the center

manifold. Writing such a vector field is best done in complex coordinates, one finds

ż = f(z, z̄, µ). We can then appeal to the normal form theorem to simplify / transform

this complex ODE, by mean of a change of variable into a normal form which can be

shown to be given by the equation below Ȧ = (µ+ iω)A+ · · ·.
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Theorem 4.2 (Hopf bifurcation)

Assume f is Ck, k ≥ 5 in a neighbourhood of (0, 0) ∈ R2 × R, and that it satisfies

f(0, 0) = 0, L := ∂uf(0, 0) = 0.

Assume that the two eigenvalues of the linear operator L are ±iω for some ω > 0.

Finally, assume that the normal form can be written

d

dt
A = (µ · a+ iω)A+ b|A|2A+O((|µ|+ |A|2)2)

with <a,<b 6= 0. Then, a Hopf bifurcation occurs at µ = 0. More precisely, the

following properties hold in a neighbourhood of 0 in R2 for sufficiently small µ:

• if <a<b < 0 (resp. ab > 0) the differential equation has precisely one

equilibrium u(µ) for µ < 0 (resp., for µ > 0), with u(0) = 0. This equilibrium

is stable when <b < 0 and unstable when <b > 0.

• if <a<b < 0 (resp. <a<b > 0) the differential equation possesses for

µ > 0 (resp., for µ < 0) an equilibrium u(µ) and a unique periodic orbit

u∗(µ) = O(
√
|µ|), which surrounds this equilibrium. The periodic orbit is

stable when <b < 0 and unstable when <b > 0, whereas the equilibrium has

opposite stability.

The proof of the above theorem was proposed in an exercise. One first look at

the truncated system by means of polar coordinates and then proves that the observed

periodic orbit persists for the full system.
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Appendix A. Jordan decomposition
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