Some Mathematical Methods for Neurosciences

Présentation du cours 2022-2023 (avec E. Tanré)

Master M2 UPMC

Master M2 MVA

Stages Master - Biblio. / Refs. - Cours / Lectures - Where / When 

We present a number of mathematical tools that are central to modeling in neuroscience. The prerequisites to the course are a good knowledge of differential calculus and probability theory from the viewpoint of measure theory. The thrust of the lectures is to show the applicability to neuroscience of the mathematical concepts without giving up mathematical rigor. The concepts presented in the lectures will be illustrated by exercise sessions.

  • Introduction to dynamical systems: orbits and phase portraits, invariant manifolds, center manifold in finite dimension.
  • Introduction to bifurcation theory: dimension 1 (saddle-node, transcritical, pitchfork), dimension 2 (Hopf), center manifold, normal form, equivariant bifurcations.
  • Applications: single spiking neuron dynamics, Turing mechanism for cortical pattern formation, geometric visual hallucinations.
  • Mesoscopic models of visual cortical areas: anatomical structure of the visual cortex (V1), functional architecture of V1, neural fields models.
  • Neuronal models: aspatial Hodgkin-Huxley model, simplified models, synaptic models, spatial models.
  • Importance of noise: Brownian motion, stochastic differential equations, application to neurons.


Nous présentons dans ce cours quelques outils mathématiques qui interviennent de manière systématique dans de nombreux problèmes de modélisation en neurosciences. Les prérequis sont une bonne connaissance du calcul différentiel et du calcul des probabilités dans le cadre de la théorie de la mesure. Sans trahir la rigueur mathématique, le cours s'efforcera de mettre en valeur l'applicabilité aux neurosciences des concepts présentés. Le cours sera complété par des séances d'exercices.

  • Introduction aux systèmes dynamiques: orbites et portraits de phases, variétés invariantes, équivalence de systèmes dynamiques, classification topologique des équilibres, stabilité structurelle, variété centrale en dimension finie.
  • Introduction à la théorie des bifurcations: dimension 1 (noeud-selle, transcritique, fourche), dimension 2 (Hopf), variété centrale, forme normale, bifurcations équivariantes.


  • Modèles mésoscopiques de certaines structures corticales: structure anatomique du cortex visuel (aire V1), architecture fonctionnelle de V1, modèles de champs neuronaux.
  • Sensibilité à l'orientation des contours visuels, formation de structures corticales et hallucinations visuelles.
  • Modèles de neurones: le modèle de Hodgkin-Huxley sans espace, modèles simpliés, modèles de synapses, modèles spatiaux.
  • Le rôle du bruit: mouvement Brownien, équations différentielles stochastiques, application aux neurones.

 Interships Master

Here are the projects proposed this year (more to come):

 Bibliographie sommaire (A few references)

  1. Kandel, Eric R., éd. Principles of neural science. 5th ed. New York: McGraw-Hill, 2013.
  2. Byrne, John H., Ruth Heidelberger, et Melvin Neal Waxham, From molecules to networks: an introduction to cellular and molecular neuroscience, 2014.
  3. Gerstner, Wulfram, Werner M. Kistler, Richard Naud, et Liam Paninski. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, 2014.
  4. Koch, Christof. Biophysics of Computation: Information Processing in Single Neurons. Oxford Univ. Press, 2004.
  5. Bressloff, Paul C. Waves in Neural Media, Springer, 2014.
  6. Eugène Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, 2006.
  7. G. Bard Ermentrout and David H. Terman, Mathematical Foundations of Neuroscience, Springer, 2010.
  8. Sterratt, David, Principles of computational modelling in neuroscience. Cambridge University Press, 2011.

  1. Meiss, Differential Dynamical Systems. SIAM, 2007
  2. Yuri A. Kuznetsov, Elements of applied bifurcation theory.
  3. Sylvie Benzoni, Cours de M1 sur les EDOs, [Link]
  4. Haragus, Mariana, et Gerard Iooss. Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. London: Springer London, 2011.
  5. Jean-François Le Gall, Mouvement brownien, martingales et calcul stochastique, 2013. [Link]

Date et lieu des cours et des TPs ( When and where)

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Les cours ont lieu les jeudis de 13:30 à 16:30, les séances de TDs de 16h45-18h45

The lectures will be given at ENS Saclay from 13:30 to 16:30, tutorials: 16h45-18h45.

October, 20th (slides)

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

This document contains basic results useful for the lectures. One may also look at Meiss, Differential Dynamical Systems. SIAM, 2007.

Towards models of isolated neurons.

  • Introduction to the Central Nervous System CNS
  • Models of a single neuron ( Hodgkin-Huxley ) 
  • Basics of dynamical systems (existence theorem, stability)
  • Introduction to planar models of single neurons (Morris–Lecar , FitzHugh-Nagumo, Integrate and Fire, Exponential Integrate and Fire...)


October, 27th (slides)

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Dynamics of isolated neuron.

  • Introduction to local bifurcation theory (codim 1)
  • Examples of bifurcations in neural models of single point neuron


November, 10th (slides)

Coupling the neurons together.
  • Synaptic transmission, learning in Hippocampus
  • Normal form theory
  • Delayed Differential Equations
  • Applications to models of populations of neurons


- Payeur, Alexandre, Jordan Guerguiev, Friedemann Zenke, Blake A. Richards, and Richard Naud. “Burst-Dependent Synaptic Plasticity Can Coordinate Learning in Hierarchical Circuits.” Nature Neuroscience 24, no. 7 (July 2021): 1010–19.
- Bellec, Guillaume, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang Maass. “A Solution to the Learning Dilemma for Recurrent Networks of Spiking Neurons.” Nature Communications 11, no. 1 (July 17, 2020): 3625.

November, 17th (slides)

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Model of space dependent population of neurons.

  • Normal form theory
  • Models of visual cortex and their analysis


November, 24th (slides)

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

  • Introduction to noisy models in neurosciences
  • Low dimensions models (e.g. Integrate and Fire)

Model of spiking times.

  • Poisson processes
  • Inhomogeneous Poisson Processes
  • Rejection procedure for simulation

December, 1st

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

  • Markov Processes
  • PDMP

December, 8th

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Greve de train - cours en visio

Mot de passe : XXXXX

December, 15th

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Examen January, 5th 2023

Location: Saclay, à l’ENS, dans la salle 3E34 (bâtiment Sud-Ouest - 3è étage)

Time: 14h

Example of Exam

Summary of deterministic part